Площадь параллелограмма равна двум площадям треугольника АСД.
Применим формулу Герона. p = 13,3919905
.S(ACD) = 26,05591647 ≈ 26,1.
S(ABCD) = 2*26,05591647 ≈ 52,1.
Длины отрезков стороны АД, отсекаемые точкой Е, находим с учётом свойства биссектрисы - она делит АД пропорционально сторонам АС и СД: АЕ = 5,6. ЕД = 3,0.
5) Угол АОВ = СОД = 72 градуса.
Тогда угол АВО = 180 - 44 - 72 = 64 градуса.
Находим половину диагонали АО по теореме синусов.
АО = (6,3/sin 72°)*sin 64° = (6,3/0,95106)* 0,89879 = 5,9538 ≈ 6,0.
Находим диагональ АС = 2*АО = 11,9076 ≈ 11,9.
Сторону параллелограмма АД находим по теореме косинусов.
АД = √(СD^2 + AC^2 - 2*CD*AC*cos44) = 8,57638 ≈ 8,6.
Периметр Р = 2*6,3 + 2*8,6 = 29,8.
Площадь параллелограмма равна двум площадям треугольника АСД.
Применим формулу Герона. p = 13,3919905
.S(ACD) = 26,05591647 ≈ 26,1.
S(ABCD) = 2*26,05591647 ≈ 52,1.
Длины отрезков стороны АД, отсекаемые точкой Е, находим с учётом свойства биссектрисы - она делит АД пропорционально сторонам АС и СД: АЕ = 5,6. ЕД = 3,0.
ответ: №42.5 sin∠А= 0,8572; cos∠А=0,5077; tg∠А=1,6643.
sin∠C=0,7960; cos∠С=0,6018; tg∠C=1,3270.
sin∠В=0,9272; cos∠В=0,3746; tg∠В=2,4750.
№42.6 выполнить аналогично №42.5
Объяснение: Пусть в Δ АВС АВ=13, ВС=14, АС=15.
Из теоремы косинусов:
cos∠А=(13²+15²-14²) : (2*13*15)=(169+225-196):390=0,5077 ⇒
⇒ ∠А≈59°; sin∠А= 0,8572; tg∠А=1,6643.
По теореме синусов АВ : sin∠C=ВC : sin∠А ⇒
⇒ sin∠C=АВ*sin∠А:ВС=13*0,8572:14=0,7960 ⇒
⇒ ∠С≈53°, cos∠С=0,6018; tg∠C=1,3270.
Из теоремы о сумме углов треугольника:
∠В= 180° - (∠А+∠С)=180° - (59°+53°)=180° - 112°= 68° ;
sin∠В=0,9272; cos∠В=0,3746; tg∠В=2,4750.