А) Прямоугольные ΔСQB и ΔAPB подобны по острому углу (угол В-общий) СQ/AP=QB/PB=ВС/АВ Откуда QB/ВС=РВ/АВ Значит ΔАВС и ΔРВQ подобны по 2 пропорциональным сторонам (QB/ВС=РВ/АВ) и углу между ними (угол В-общий). Т.к. у подобных треугольников углы равны, то <BPQ=<BAC, ч.т.д. б) Sавс=96, Sаqрс=72, значит Sрвq=Sавс-Sаqрс=96-72=24 Отношение площадей 2 подобных треугольников равно квадрату коэффициента подобия: Sрвq/Sавс=24/96=1/4 Значит QB/ВС=РВ/АВ=PQ/AC=1/2 Из прямоугольного Δ СQB QB/ВС=сos B, cos B=1/2, значит <B=60° Радиус R окружности, описанной около треугольника ABC равен: R=AC/2sin B AC=2R*sin 60= 2*16/√3*√3/2=16 PQ=AC/2=16/2=8
угол СВЕ=угол СDE=60⁰
CL-высота параллелограмма
ΔСLD-прямоугольный, угол LCD=90°-60°=30° ⇒ LD=0.5*CD=0.5*10=5
CL²=CD²-LD²=10²-5²=100-25=75
CL=√75=5√3
угол между плоскостями измеряется линейным углом АКh=a (угол AKC=угол СКh=90°) из свойства параллелограмма: угол СКh=угол КhE ⇒ Kh-высота ⇒
Kh=СL=5√3
АК-высота ΔАВС, т.к. ΔАВС-равносторонний (сторона=8см),то
СК=0,5*СВ=0,5*8=4
АК²=АС²-СК²=8²-4²=64-16=48
АК=√48=4√3
АК=4√3, Kh=5√3, Ah=√33
для нахождения косинуса угла а воспользуемся теоремой косинусов:
с²=а²+в²-2ав*сosa
cosa=(a²+в²-с²)/2ав=(АК²+Кh²-Ah²) / 2*AK*Kh=(АК²+Кh²*-Ah²) / 2*AK*Kh=
( (4√3)²+(5√3)²-(√33)² ) / 2*4√3*5√3=(48+75-33) / 120=90/120=3/4
отв: cos a=3/4
СQ/AP=QB/PB=ВС/АВ
Откуда QB/ВС=РВ/АВ
Значит ΔАВС и ΔРВQ подобны по 2 пропорциональным сторонам (QB/ВС=РВ/АВ) и углу между ними (угол В-общий). Т.к. у подобных треугольников углы равны, то <BPQ=<BAC, ч.т.д.
б) Sавс=96, Sаqрс=72, значит Sрвq=Sавс-Sаqрс=96-72=24
Отношение площадей 2 подобных треугольников равно квадрату коэффициента подобия: Sрвq/Sавс=24/96=1/4
Значит QB/ВС=РВ/АВ=PQ/AC=1/2
Из прямоугольного Δ СQB QB/ВС=сos B, cos B=1/2, значит <B=60°
Радиус R окружности, описанной около треугольника ABC равен:
R=AC/2sin B
AC=2R*sin 60= 2*16/√3*√3/2=16
PQ=AC/2=16/2=8