Одна із сторін трикутника дорівнює а, прилеглі до неї кути дорівнюють 45о і 60о. Знайдіть висоту трикутника, проведену до даної сторони.
2) У трикутнику АВС АВ = ВС, BD і АМ – висоти трикутника, BD : АМ = 3 : 1. Знайдіть cos C
3) З точки D, що лежить поза прямою п, проведено до цієї прямої похилої DK і DB, які утворюють з нею кути 45о і 60о відповідно. Знайдіть довжину проекції похилої DK на пряму п, якщо DB 10 корень 3 см.
4) Кут при вершині рівнобедреного трикутника дорівнює β, висота, проведена до бічної сторони, дорівнює h. Знайдіть основу трикутника.
5) Основа рівнобедреного трикутника дорівнює 10, а бічна сторона – 13. Знайдіть тангенс кута між бічною стороною трикутника і висотою, проведеною до його основи.
6) Знайдіть довжину відрізка х.
(фото)
CosA = 4/√42 ≈ 0,617.
CosB = 2/√30 ≈ 0,365.
CosC = 3/√35 ≈ 0,51.
Объяснение:
Если надо найти КОСИНУСЫ углов, то решение:
CosA = (Xab·Xac+Yab·Yac+Zab·Zac)/(|AB|·|AC|). (формула).
Координаты вектора AB = (0-2;1-(-1);3-1) = (-2;2;2).
Модуль АВ равен |AB| =√((-2)²+2²+2²) = 2√3.
Координаты вектора AC = (-1-2;1-(-1);0-1) = (-3;2;-1).
Модуль АC равен |AC| =√((-3)²+2²+(-1)²) = √14.
CosA =(6+4-2)/(√(12·14) = 8/(2√42) = 4/√42 ≈ 0,617.
∠A ≈ 52°
Аналогично:
CosВ = (Xba·Xbc+Yba·Ybc+Zba·Zbc)/(|BA|·|BC|).
Координаты вектора BA = (2-0;-1-1);1-3) = (2;-2;-2).
Модуль ВA равен |BA| = 2√3.
Координаты вектора BC =(-1-0;1-1);0-3) = (-1;0;-3).
Модуль BC равен |BC| =√((-3)²+2²+(-1)²) = √10.
CosB =(-2+0+6)/(√(12·10) = 4/(2√30) = 2/√30 ≈ 0,365.
∠B ≈ 69° .
CosC = (Xca·Xcb+Yca·Ycb+Zca·Zcb)/(|CA|·|CB|).
Координаты вектора CA = (-1-2;1-(-1);0-3) = (3;-2;1).
Модуль CA равен |CA| = √14.
Координаты вектора CB =(0-(-1);1-1);3-0) = (1;0;3).
Модуль BC равен |CB| =√(1²+0²+3)²) = √10.
CosC =(3+0+3)/(√(14·10) = 6/(2√35) = 3/√35 ≈ 0,51.
∠C ≈ 59°.
Проверка: ∠А +∠В +∠С = 52° + 69° +59° = 180°.
Достаточно доказать, что RPTQ – равнобокая трапеция. Четырёхугольник ARDQ – вписанный, поэтому ∠RQD = ∠DAR. Также, поскольку четырёхугольник ABCD – вписанный, то ∠BCD = 180° – ∠DAR. Cледовательно, ∠RQD + ∠BCD = 180°, то есть прямые PT и RQ параллельны.
Докажем теперь, что в трапеции RPTQ диагонали равны. Четырёхугольник APCQ вписан в окружность с диаметром AC, поэтому
PQ = AC·sin∠BCD. Aналогично, RT = BD·sin∠ABC. Но из вписанности четырёхугольника ABCD следует, что
Значит, PQ = RT, то есть трапеция – равнобокая.