Теорема. Перпендикуляр, опущенный из вершины прямого угла на гипотенузу, есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гиптенузу, а каждый катет есть средняя пропорциональная величина между гипотенузой и прилежащим к этому катету отрезком гипотенузы.
Пусть a и b - катеты, с - гипотенуза, х - длина перпендикуляра.
15 см и 20 см
Объяснение:
Теорема. Перпендикуляр, опущенный из вершины прямого угла на гипотенузу, есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гиптенузу, а каждый катет есть средняя пропорциональная величина между гипотенузой и прилежащим к этому катету отрезком гипотенузы.
Пусть a и b - катеты, с - гипотенуза, х - длина перпендикуляра.
Тогда:
1) 9 : х = х : 16
х² = 144
х = 12 см
2) Первый катет (по теореме Пифагора):
а = √(9²+12²) = √(81+144) = √225 = 15 см
3) Второй катет:
b = √(16²+12²) = √(256+144) = √400 = 20 см
ПРОВЕРКА:
(9+16)² = 25² = 625
15² + 20² = 225 + 400 = 625
Квадрат гипотенузы равен сумме квадратов катетов
ответ: 15 см и 20 см
Объяснение:
1. АО = ОВ как радиусы => треугольник АОВ равнобедренный
угол А = 40
угол ВОС - центральный, ОАВ - вписанный. Значит, ВОС = 40*2 = 80
2. При построении получаем прямоугольный треугольник ДОС с гипотенузой ОС = 16 и углом О = 60. ОД - радиус - катет.
Второй острый угол = 90-60 = 30
ОД лежит напротив угла в 30, значит он равен половине гипотенузы. То есть ОД = 16/2 = 8
3. Рассматриваем треугольники МОК и РОN
Они равны по 1 признаку: ОМ=ОР, ОК=ОN как радиусы окружности, углы между ними (вокруг точки О) равны как вертикальные.
Значит, углы М, К, Р и N также равные => МК параллельно PN т.к. накрест лежащие углы равны.