Одна сторона трикутника на 6 см менша від другої, а кут між ними становить 60 градусів. Знайдіть периметр трикутника, якщо його третя сторона дорівнює 14см
Дан куб АВСDА1В1С1D1. Докажите В1D перпендикулярен D1С.
Объяснение:
Введем прямоугольную систему координат: В(0;0;0) ,ось ох по ребру ВА, ось оу по ребру ВС, ось оz по ребру ВВ1 .
Пусть ребро куба а, тогда координаты
В1(0;0;а) ,D (a; a;0) , вектор В1D(a; a;-a) .
D1(a; a; a) ,C(0;a;0), вектор D1C(-a; 0;-a ).
Найдем скалярное произведение в координатах :
В1D×D1C=a×(-a)+a×0+(-a)×(-a)=-a²+0+a²=0. Т.к. скалярное произведение равно нулю, то вектора перпендикулярны, а значит и прямые , на которых лежат эти вектора, перпендикулярны.
1)16 корней из 3× pi
2)288 корней из 3 ×pi
Объяснение:
1)Sбок. цил.= 2×pi×r×h, r=AB/2, h=CB, pi=~3,14(иногда pi оставляют в ответе )
sinCAB=CB/AC, cosCAB=AB/AC
sin60°=CB/8, (корень из 3)/2=CB/8, CB= (8корней из 3)/2=4×корней из 3
cos60°=AB/8, 1/2=AB/8, 2AB=8, AB=4
Sбок. цил.=2*3,14×2×4 корней из 3=50,24 корней из 3 (или = 16корней из 3 ×pi)
2)Sбок. цил.= 2×pi×r×h, r=OA=OB, h=OO1, pi=~3,14(иногда pi оставляют в ответе )
треугольник AOB-египетский, тк у него стороны равны соотношению 3:4:5
Следовательно, OB=12
(ну или решать через теорему Пифагора OB²=15²-9², OB=Корень из 144,OB=12)
в цилиндр можно вписать только равнобедренный треугольник
=>доп.построение:продолжим сторону OB до пересечения с окружностью, пусть эта сторона BB1=12×2=24=B1O1=O1B
OO1²=24²-12², OO1=12 корней из 3
Sбок. цил.=2×pi×12×12корней из3=288корней из 3×pi
Дан куб АВСDА1В1С1D1. Докажите В1D перпендикулярен D1С.
Объяснение:
Введем прямоугольную систему координат: В(0;0;0) ,ось ох по ребру ВА, ось оу по ребру ВС, ось оz по ребру ВВ1 .
Пусть ребро куба а, тогда координаты
В1(0;0;а) ,D (a; a;0) , вектор В1D(a; a;-a) .
D1(a; a; a) ,C(0;a;0), вектор D1C(-a; 0;-a ).
Найдем скалярное произведение в координатах :
В1D×D1C=a×(-a)+a×0+(-a)×(-a)=-a²+0+a²=0. Т.к. скалярное произведение равно нулю, то вектора перпендикулярны, а значит и прямые , на которых лежат эти вектора, перпендикулярны.