Одна из сторон основания прямоугольного параллелепипеда 4см, а диагональ основания 5см. вычислите площадь полной поверхности, если высота параллелепипеда равна 8см.
По свойствам углов параллелограма угол ВАД= углу ВСД и равен 30. Сумма углов параллелограмма, прилежащих к одной стороне, равна 180º, значит ВСД+СДА=180, СДА=180-30=150. Теперь находим угол ВДА=150-75(угол ВДС=75, из дано), значит угол ВДА=75 И угол АВД тоже равен 75, так как 180-30-75=75. Значит треугольник АВД и треугольник ВСД равнобедренный с боковыми сторонами АВ и АД, ВСи СД. Сумма длин сторон АВ и АД равна половине периметра, а он равен 40 см., также мы уже знаем, что эти стороны равны, значит АВ=АД=40/2/2=10 см ответ: все стороны параллелограмма по 10 см, а углы 30,150,30,150
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180º, значит ВСД+СДА=180, СДА=180-30=150. Теперь находим угол ВДА=150-75(угол ВДС=75, из дано), значит угол ВДА=75
И угол АВД тоже равен 75, так как 180-30-75=75. Значит треугольник АВД и треугольник ВСД равнобедренный с боковыми сторонами АВ и АД, ВСи СД. Сумма длин сторон АВ и АД равна половине периметра, а он равен 40 см., также мы уже знаем, что эти стороны равны, значит АВ=АД=40/2/2=10 см
ответ: все стороны параллелограмма по 10 см, а углы 30,150,30,150
Вариант 1: 10 см, 13 см, 13 см;
Вариант 2: 16 см, 10 см, 10 см.
Объяснение:
1) Если это боковые стороны, то тогда длина третьей стороны (основания):
36 - 26 = 10 см.
А боковые стороны равны:
26 : 2 = 13 см
2) Если это одна боковая сторона и основание, то тогда составляем систему уравнений и решаем её.
х - основание,
у - боковая сторона,
х + у = 26 - это первое уравнение,
х + 2у = 36 - это второе уравнение.
Умножаем первое уравнение на 2 и из полученного результата вычитаем второе уравнение, получаем:
2х + 2у = 52 - домножили первое уравнение на 2
2х - х + 2у- 2у = 52 -36
х = 16 см - это основание,
тогда боковые стороны равны:
(36 - 16) : 2 = 20 : 2 = 10 см
Так как сумма 2-х сторон больше длины основания, то стороны пересекутся, значит, такой треугольник существует.
Вариант 1: 10 см, 13 см, 13 см;
Вариант 2: 16 см, 10 см, 10 см.