Обозначил меньшее основание - а, большее основание - b. Тогда периметр трапеции, с учётом условия равенства меньшего основания и боковых сторон, можно записать так Р=3*а+b. Площадь трапеции выглядит так: S=1/2*(a+b)*h, подставим известные нам значения 128=1/2*(a+b)*8 или a+b=(128*2)/8; a+b=32. Выразим из последнего уравнения b и подставим его в уравнение периметра: b=32-a; P=3*a+32-a; получим 52=2*а+32; 2а=52-32; 2а=20; а=10 см. b=32-10=22 см. Получили, что боковые стороны и меньшее основание равны 10 см, а большее основание равно 22 см.
Окружность360°, 3х+5х+10х=360° 18х=360 х=20 3*20=60 если начертит чертеж получим треугольник, две стороны которого равны радиусу, угол у вершины равен60° основание ьреугольника равно 12 см, отпустим с вершины треугольника на основание высоту, так как у нас треугольник равнобедренный, то эта высота будет и медианой и биссектрисой. когда отпусти высоту получим прямоугольный треуголник 12:2= 6 см, напротив лежит угол 30°, сторона в 6 см является катетом, а гипотенуза радиус, значит радиус равен 12см. по правилу катет лежащий напротив 30° равен половине гипотенузы.
3х+5х+10х=360°
18х=360
х=20
3*20=60
если начертит чертеж получим треугольник, две стороны которого равны радиусу, угол у вершины равен60° основание ьреугольника равно 12 см, отпустим с вершины треугольника на основание высоту, так как у нас треугольник равнобедренный, то эта высота будет и медианой и биссектрисой. когда отпусти высоту получим прямоугольный треуголник 12:2= 6 см, напротив лежит угол 30°, сторона в 6 см является катетом, а гипотенуза радиус, значит радиус равен 12см. по правилу катет лежащий напротив 30° равен половине гипотенузы.