1. по свойству параллельных прямых и секущей <ВСА=<САD=40° (накрест лежащие углы)
рассмотрим ∆ABC AB=BC=> ∆ABC равнобедренный =><ВАС=<ВСА=40°
<А=<САD+<BAC= 40°+40°=80°
<В=180°-2*<ВСА=180°-2*40°=100°
т.к. ABCD AB=CD=> трапеция равнобедренная=> <D=80° <C=100°
2. дополнительное построение СН; СН_L АD
Рассмотрим ∆CHD <H=90°
<DCH=90°-<D=45° => ∆CHD равнобедренный прямоугольный треугольник => СН=НD
т.к. СН _L AD; AB _L AD и BC||AD=>
AH=10; CH=10 => HD=10
AD= AH+HD=10+10=20
Точка Е- середина боковой стороны АВ трапеции АВСD. Докажите, что площадь треугольника ЕСD равна половине площади трапеции.
Сделаем рисунок, проведем прямую ЕК параллельно основаниям трапеции.
ЕК - средняя линия трапеции, т.к. АЕ=ВЕ, и ЕК || АD
Проведем высоту ВН, точку ее пересечения с ЕК обозначим М.
ВМ=ВН:2 =h1
МН=ВН:2=h2
S CKE=h1*EK:2
S KED=h2*EK:2
S ECD=S CEK+S KED= h1*EK:2+h2*EK:2=(h1+h2)*EK:2
Но (h1+h2)=Н ( высоте трапеции)
S ECD=H*EK:2
Площадь трапеции равна произведению высоты на полусумму оснований. S ABCD= H*EK= 2*H*EK:2=2 S ECD, что и требовалось доказать.
Объяснение:
1. по свойству параллельных прямых и секущей <ВСА=<САD=40° (накрест лежащие углы)
рассмотрим ∆ABC AB=BC=> ∆ABC равнобедренный =><ВАС=<ВСА=40°
<А=<САD+<BAC= 40°+40°=80°
<В=180°-2*<ВСА=180°-2*40°=100°
т.к. ABCD AB=CD=> трапеция равнобедренная=> <D=80° <C=100°
2. дополнительное построение СН; СН_L АD
Рассмотрим ∆CHD <H=90°
<DCH=90°-<D=45° => ∆CHD равнобедренный прямоугольный треугольник => СН=НD
т.к. СН _L AD; AB _L AD и BC||AD=>
AH=10; CH=10 => HD=10
AD= AH+HD=10+10=20
Точка Е- середина боковой стороны АВ трапеции АВСD. Докажите, что площадь треугольника ЕСD равна половине площади трапеции.
Сделаем рисунок, проведем прямую ЕК параллельно основаниям трапеции.
ЕК - средняя линия трапеции, т.к. АЕ=ВЕ, и ЕК || АD
Проведем высоту ВН, точку ее пересечения с ЕК обозначим М.
ВМ=ВН:2 =h1
МН=ВН:2=h2
S CKE=h1*EK:2
S KED=h2*EK:2
S ECD=S CEK+S KED= h1*EK:2+h2*EK:2=(h1+h2)*EK:2
Но (h1+h2)=Н ( высоте трапеции)
S ECD=H*EK:2
Площадь трапеции равна произведению высоты на полусумму оснований. S ABCD= H*EK= 2*H*EK:2=2 S ECD, что и требовалось доказать.
Объяснение: