1. Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Проведем высоту ромба РН через точку О пересечения диагоналей (центр ромба). ВD=10, ВО=5, РН=DM=8, ОН=4. НВ=3 (так как треугольник ОНВ - Пифагоров) ОН - высота из прямого угла и делит гипотенузу так, что АН*НВ=ОН² (свойство). Отсюда АН=16/3=5и1/3. Тогда АВ=АН+НВ =5и1/3+3=8и1/3. Или так: из треугольника DMB по Пифагору: МВ=√(BD²-DM²)= √(100-64)=6. AM²=AD²-DM² (по Пифагору). АМ=АВ-ВМ=АВ-6. AD=АВ. => (АВ-6)²=АВ²-64 => 12AB=100, АВ=100/12 = 8 и 1/3. ответ: сторона ромба равна 8и1/3 ед.
Расстояние от точки D до плоскости ABC является длиной перпендикуляра, опущенного из точки на плоскость, т. е. равно длине отрезка CD.
Δ ACD -- прямоугольный, <C -- прямой, AC и CD -- катеты, <A = 30°. = tg 30° = AC = CD
Δ BCD -- прямоугольный, <C -- прямой, BC и CD -- катеты, <B = 60°. = tg 60° = BC =
Обозначим CD = x, тогда AC = , BC =.
Δ ACB -- прямоугольный, и для него выполняется теорема Пифагора: (x)² + ()² = (2)² 3x² + = 120 10x² = 360 x² = 36 x = +- 6 Так как длина не может быть отрицательной, CD = 6.
Проведем высоту ромба РН через точку О пересечения диагоналей (центр ромба).
ВD=10, ВО=5, РН=DM=8, ОН=4.
НВ=3 (так как треугольник ОНВ - Пифагоров)
ОН - высота из прямого угла и делит гипотенузу так, что АН*НВ=ОН² (свойство). Отсюда
АН=16/3=5и1/3. Тогда АВ=АН+НВ =5и1/3+3=8и1/3.
Или так: из треугольника DMB по Пифагору:
МВ=√(BD²-DM²)= √(100-64)=6.
AM²=AD²-DM² (по Пифагору). АМ=АВ-ВМ=АВ-6.
AD=АВ. => (АВ-6)²=АВ²-64 => 12AB=100,
АВ=100/12 = 8 и 1/3.
ответ: сторона ромба равна 8и1/3 ед.
2.Площадь треугольника S=(1/2)*a*h.
h=√(10²-6²)=8 (по Пифагору).
S= (1/2)*12*8=48ед².
r=S/p = 48/16= 3 ед. (р - полупериметр)
R=abc/4S = 10*10*12/192=6,25 ед.
Δ ACD -- прямоугольный, <C -- прямой, AC и CD -- катеты, <A = 30°.
= tg 30° =
AC = CD
Δ BCD -- прямоугольный, <C -- прямой, BC и CD -- катеты, <B = 60°.
= tg 60° =
BC =
Обозначим CD = x, тогда AC = , BC =.
Δ ACB -- прямоугольный, и для него выполняется теорема Пифагора:
(x)² + ()² = (2)²
3x² + = 120
10x² = 360
x² = 36
x = +- 6
Так как длина не может быть отрицательной, CD = 6.