Рассмотрим плоскость ABD (по А1 существует плоскость ABD). ME- средняя линия треугольника ABD по определению. По А1, BK - середина треугольника BDC (по определению). PK||BD, PK=DB÷2 => PK||DE (по теореме о параллельных прямых). PK=ME=DB%2. По А1: существует такая плоскость MPKE-параллелограм (по первому признаку параллелограмма). MK, De-диагональ, MK=PE (по условию). По А1: MP-средняя линия треугольника ABC. Треугольник EMP-прямоугольный => по теореме Пифагора найдём ME^2=EP^2-MP^2=10^2 - 6^2 =8^2 => ME=8, тогда BD=2*8=16. ОТВЕТ: BD=16
Если все грани наклонены под одинаковыми углами, то высота пирамиды падает в центр вписанной окружности, то есть в точку О пересечения биссектрис треугольника. Треугольник со сторонами 5, 12 и 13 - прямоугольный, угол С - прямой. AC = 5; BC = 12; AB = 13 Периметр треугольника P = 5 + 12 + 13 = 30; площадь S = 5*12/2 = 30 Найдем радиус вписанной окружности. r = OK = OM = ON = 2S/P = 2*30/30 = 2 см Высота H = OD = 4√2 см Апофемы, перпендикулярные к ребрам основания DK = DM = DN = √(r^2 + H^2) = √(4 + 16*2) = √36 = 6 см Площади боковых граней S(ABD) = DN*AB/2 = 6*13/2 = 3*13 = 39 кв.см. S(ACD) = DK*AC/2 = 6*5/2 = 3*5 = 15 кв.см. S(BCD) = DM*BC/2 = 6*12/2 = 6*6 = 36 кв.см. S(бок) = S(ABD) + S(ACD) + S(BCD) = 39 + 15 + 36 = 90 кв.см.
Рассмотрим плоскость ABD (по А1 существует плоскость ABD). ME- средняя линия треугольника ABD по определению. По А1, BK - середина треугольника BDC (по определению). PK||BD, PK=DB÷2 => PK||DE (по теореме о параллельных прямых). PK=ME=DB%2. По А1: существует такая плоскость MPKE-параллелограм (по первому признаку параллелограмма). MK, De-диагональ, MK=PE (по условию). По А1: MP-средняя линия треугольника ABC. Треугольник EMP-прямоугольный => по теореме Пифагора найдём ME^2=EP^2-MP^2=10^2 - 6^2 =8^2 => ME=8, тогда BD=2*8=16. ОТВЕТ: BD=16
Треугольник со сторонами 5, 12 и 13 - прямоугольный, угол С - прямой.
AC = 5; BC = 12; AB = 13
Периметр треугольника P = 5 + 12 + 13 = 30; площадь S = 5*12/2 = 30
Найдем радиус вписанной окружности.
r = OK = OM = ON = 2S/P = 2*30/30 = 2 см
Высота H = OD = 4√2 см
Апофемы, перпендикулярные к ребрам основания
DK = DM = DN = √(r^2 + H^2) = √(4 + 16*2) = √36 = 6 см
Площади боковых граней
S(ABD) = DN*AB/2 = 6*13/2 = 3*13 = 39 кв.см.
S(ACD) = DK*AC/2 = 6*5/2 = 3*5 = 15 кв.см.
S(BCD) = DM*BC/2 = 6*12/2 = 6*6 = 36 кв.см.
S(бок) = S(ABD) + S(ACD) + S(BCD) = 39 + 15 + 36 = 90 кв.см.