Трапеция вписана в окружность, следовательно, она равнобедренная (свойство). В равнобедренной трапеции высота, проведенная к большему основанию из вершины тупого угла, делит это основание на отрезки, больший из которых равен полусумме оснований. Итак, АН=9см, HD=4см. Угол АВD = 90°. ВР=СН, АР=НD.АН=РD.
Треугольник АВD - прямоугольный и ВР - его высота из прямого угла. Гипотенуза делится этой высотой на отрезки так, что квадрат высоты равен произведению этих отрезков (свойство). =>
ВР = (АР·PD) = √(4·9) = 6 см.
Площадь трапеции равна произведению полусуммы оснований на высоту, то есть Sаbсd = АН·ВР = 9·6 = 54 см².
Дано:
ABC - равнобедренный треугольник
AC - Основание треугольника = AB - 3 или BC - 3
P = 15.6 см - Периметр треугольника
Так как треугольник равнобедренный, его боковые стороны равны.
AB = BC
Пусть x - любая боковая сторона треугольника
Так как нам известно, что основание треугольника на 3 раза меньше, мы можем написать уравнение.
P = x + x +(x-3) - Периметр - Сумма длин всех сторон(Боковая сторона+ Боковая сторона + Основание)
15.6=x+x+(x-3)
15.6=3x-3
18.6 = 3x
x = 6.2 - Боковая сторона
Основание = 6.2 - 3 = 3.2
Проверка:
3.2+6.2 +6.2 = 15.6 см
ответ: 6.2, 6.2, 3.2 см
Sаbсd = 54 см².
Объяснение:
Трапеция вписана в окружность, следовательно, она равнобедренная (свойство). В равнобедренной трапеции высота, проведенная к большему основанию из вершины тупого угла, делит это основание на отрезки, больший из которых равен полусумме оснований. Итак, АН=9см, HD=4см. Угол АВD = 90°. ВР=СН, АР=НD.АН=РD.
Треугольник АВD - прямоугольный и ВР - его высота из прямого угла. Гипотенуза делится этой высотой на отрезки так, что квадрат высоты равен произведению этих отрезков (свойство). =>
ВР = (АР·PD) = √(4·9) = 6 см.
Площадь трапеции равна произведению полусуммы оснований на высоту, то есть Sаbсd = АН·ВР = 9·6 = 54 см².