ОЧЕНЬ НУЖНО ЗА
Дана правильная треугольная призма ABCA1B1C1, сторона основания которой равна 4√3, а боковое ребро 2√3. Через точки A1, В1 и точку О - центр вписанной окружности треугольника АВС - проведено сечение.
1) Найдите угол между плоскостью сечения и плоскостью основания призмы.
2) Найдите площадь S сечения. В ответе запишите S√3.
Тогда РВ2 является секущей для параллельных прямых А1А2 и В1В2, тогда угол РА1А2 = углу РВ1В2 как соответственные.
Аналогично РВ2 - секущая для параллельных прямых А1А2 и В1В2, тогда углы РА2 и РВ2 равны как соответственные,
тогда треугольники РА1А2 и РВ1В2 подобны по трем углам (т.к. угол Р общий) и два других соответственно равны.
поскольку из условия дано что РА1/А1В1 = 3/2, то
РВ1/РА1 = (РА1+А1В1)/РА1 = 5/3, тогда
В1В2 = (РВ1/РА1) * А1А2 = (5/3) * 6 = 10 см
ответ: В1В2 = 10 см.
1. Треуголой АВ в точке касания.
АО - гипотенуза. Катет ОВ=0,5*АО, значит <ВАО=30°, а <ВОА=60° (сумма острых углов треугольника равна 90°).
То же самое и с треугольником АОС, так как АС=АВ (касательные из одной точки равны), а ОС=ОВ - радиус окружности.
Следовательно, <COA=60°, а <BOC=<BOA+<COA=120°.
ответ: <BOC=120°
2. Радиус перпендикулярен касательной в точке касания.
Треугольник АОВ равнобедренный (АО=ВО - дано), значит высота, проведенная к основанию (в точку касания)=медиана
и делит АВ пополам. R=6.
Тогда по Пифагору
АО=√(6²+8²)=10 ед.
3. Периметр треугольника АВС=АМ+МВ+ВN+NC+CK+KA.
Но АМ=АК, BM=BN, CN=CK - как касательные из одной точки.
Значит Pabc=2*5+2*4+2*8=24 ед.
4. Отрезок ОD перпендикулярен касательной CD в точке касания.
Прямоугольные треугольники АКО и CDO подобны по острому углу, так как <DCO=<OAK - накрест лежащие при параллельных СD и AE.
OD=OA=(1/2)*AB=5 как радиусы.
Из подобия имеем: OC/OA=OD/OK=5/4. => ОС=5*5/4= 6,25см.
ответ: ОС=6,25 ед.