очень нужно мне нужен ответ не спам, если вы думаете если вы написали какую то фигню, я могу кинуть жалобу на вас, и ваш ответ удалят и балы не дадут отнестись с пониманием! Выполните практическую работу.
Начертите окружность r = 3,5 см. Проведите две хорды АС и АВ, два взаимно перпендикулярных диаметра СD и КР.
Начертите отрезок АВ = 5 см. Проведите окружность с центром в точке А и радиусом 3 см, другую окружность с центром в точке В и радиусом 4см. Сколько точек пересечения имеют эти окружности. Назовите точки С и Д. Соедините концы отрезка АВ с этими точками. Какие фигуры получились.
Объяснение:
Чтобы решать такие задачи, нужно уметь правильно определять, что есть наша прямая, что есть наклонная к нашей прямой, а что есть проекция наклонной.
4. В четвертой задаче у вас по условию дан уже прямой угол, от этого нужно отталкиваться.
Нам дан прямой угол между BC и AC, эти прямые обе лежат в плоскости нижнего треугольника, значит какая то из них будет являтся искомой прямой, а какая то будет проекцией наклонной на эту же плоскость нижнего треугольника. BC не может быть ничьей проекцией по рисунку, значит она будет являтся нашей прямой. Тогда AC
будет являться чьей-то проекцией. По рисунку видно, что AC будет являтся проекцией MC и MA перпендикуляр к плоскости ACB(если не понятны мои рассуждения, рекомендую разобраться, как строятся
наклонные и их проекции, а также разобраться и с самой теоремой о этих перпендикулярах).
Таким образом, зная все три прямые, можем применять теорему о трех перпендикулярах.
BC (наша прямая в плоскости) перпенд. AC (AC проекция MC) - по условию, значит BC также будет перпендикулярна и самой MC - по теореме.
Дальше просто техническая часть, находим BC из нижнего прямоугольного треугольника и применяем свойство синуса для нахождения гипотенузы MB в треуг. MCB.
5. В пятом задании необходимо правильно определить искомое расстояние, (как известно, расстояние это кратчайший путь, т.е перпендикуляр). Когда мы его проведем (пусть это будет MO),
он будет являтся нашей наклонной на плоскость ABC, далее необходмо будет провести проекцию данной наклонной в плоскости ABC. Так как MO - уже перпендикуляр к
AC, то и его проекция в плоскости также будет перпендикулярна к AC. Далее, похожая техническая часть 4-го задания, увидим в плоскости ABC необходмый прямоугольный треугольник,
применяя свойство синуса найдем катет. И в нашем искомом треугольнике также найдем сторону по Пифагору (зная, что MB перпендикуляр к плоскости).
P.S Делать нечего на третьем курсе физмата <3
Угол С в треугольнике АВС найдем используя сумму углов треугольника, то есть все углы в нем дают 180 градусов:
угол С=180-60-30=90 градусов
Биссектриса СЕ делит угол С поплам,значит.Угол ЕСВ=угол АСВ/2=45 градусов( ЕС-биссектриса)
Рассмотрим прямоугольный треугольник ADC, где СД высота , углы 60 градусо, 90 градусов,Угол СЕВ=180-угол ЕВС-угол ЕСВ=180-30-45=105 градусов
Углы DЕС и СЕВ-смежные, значит угол DЕС=180-угол СЕВ=180-105=75 градусовТак как угол CDE =90 градусов(CD-высота), угол DEC=75 градусов, то угол DCE=180-CDE -DEC=180-90-75=15 градусов
ответ: 15 градусов