В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Спасибо666
Спасибо666
08.10.2022 10:12 •  Геометрия

очень нужен подробный ответ​


очень нужен подробный ответ​

Показать ответ
Ответ:
micha197979
micha197979
02.07.2020 00:49
Центр описанной окружности находится на пересечении перпендикуляров к серединам сторон треугольника. Если провести отрезок КМ между серединами известных сторон, то по свойству подобия треугольников он будет равен половине искомой стороны.
Четырехугольник ОКВМ имеет два прямых угла и две диагонали: одна ОВ - это радиус описанной окружности и искомая КМ.
Обозначим углы КВО и ОВМ соответственно α и β.
Стороны ОК и ОМ найдем по Пифагору:
ОК = √(R² - (13/2)²) = √((65/6)²-169/4) = 52/6 = 26/3.
ОМ = √(R² - (20/2)²) = √((65/6)²-100) = √625/36= 25/6.
cos α = (13/2) / (65/6) = 39/65.
cos β = 10 / (65/6) = 12/13.
sin α = (26/3) / (65/6) = 52/65.
sin β = (25/6) / (65/6) = 5/13.
Угол КВО равен α + β.
 cos (α+β) = cos α*cos β - sin α*sin β.
cos (α+β) = (39/65)*(12/13) - (52/65)*(5/13) = 16/65.
c = √(a²+b²-2abcos(α+β)).
Для треугольника КВМ а = 6,5 = 13/2, в = 20/2 = 10.
с = √((169/4)+100-2*(13/2)*10*(16/65)) = √(28665/260) = 
= √(441/4) = 21/2 = 10,5.
Искомая сторона треугольника равна 2*с = 2*10,5 = 21.
Две стороны остроугольного треугольника равны соответственно 13 см и 20 см. радиус описанного около
0,0(0 оценок)
Ответ:
Марта09
Марта09
23.09.2021 18:07
1. По теореме Пифагора найдем неизвестный катет АВ в прямоугольном треугольнике АВС:
АВ=√AC² - BC² =√(6√2)²- 6² = √36*2-36=√36=6
Получаем, что треугольник АВС - равнобедренный, значит углы при его основании АС равны:
<BAC=<BCA=(180-90):2=45°
2. <BCA=<CAD как накрест лежащие углы при пересечении двух параллельных прямых ВС и AD секущей АС,<CAD=45°
3. Треугольники АВС и AED подобны по первому признаку подобия: два угла одного треугольника соответственно равны двум углам другого. В нашем случае:<B=<AED=90°, <BCA=CAD=45°
4. Зная тангенс угла ACD запишем:
tg ACD = ED/EC, отсюда EC=ED/tg ACD= ED/2
5. Для подобных треугольников можно записать:
AB:AE=BC:ED. 
AE=AC-EC=6√2-ED/2, AE=\frac{12 \sqrt{2} - ED}{2}. Запишем отношение для подобных треугольников как:
6: \frac{12 \sqrt{2}-ED }{2}=6:ED
\frac{12}{12 \sqrt{2} -ED} = \frac{6}{ED}
ED=4√2
6. ЕС=ED/2=4√2/2=2√2
Втрапеции abcd угол a = 90 градусов, ac = 6 корней квадратных из 2, bc = 6, de - высота треугольника
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота