Очень Не лежащие в одной плоскости прямые mk, me и mf пересекают плоскость α в точках a, b и c, а параллельную ей плоскость β в точках a1, b1 и c1.
1. докажите, что:
а) соответственные стороны треугольников abc и a1b1c1 па- раллельны;
б) соответственные углы тре- угольников abc и a1b1c1 равны; в) треугольники abc и a1b1c1
подобны.
2. найдите площадь треуголь-
ника a1b1c1, если ma: aa1 =2: 1,
Sabc = 4 см
Основания трапеции AB и CD. Если продолжить AB за точку B, и DM за точку M, до их пересечения в точке D1, то очевидно DM = D1M;
Тут можно кучу обоснований дать, например, равны треугольники AMD и BMD1 по КУЧЕ углов (это очевидно подобные треугольники, то есть у них все углы равны) и одной стороне BM = CM;
На самом деле есть "более старшее"обоснование. параллельные прямые делят пропорционально ВСЕ секущие, а тут "неявно" присутствует еще одна параллельная - средняя линия, содержащая точку M.
Вот после этого очевидно, что если также продолжить DC и AM до пересечения в точке A1, то A1M = AM;
То есть получился параллелограмм AD1A1D; (диагонали делятся пополам точкой пересечения). В силу упомянутого равенства треугольников AMD и BMD1; упомянутая в задаче сумма площадей равна площади треугольника D1MA;
Диагонали делят параллелограмм на 4 треугольника, равных по площади, то есть упомянутая сумма равна также площади треугольника DMA, а это уже закрывает вопрос задачи.
Объяснение:Имеется четыре вершины A, B, C и D, значит фигура на рисунке представляет собой четырёхугольник. Известно, что два угла четырёх угольника ∠BAD=∠BCD=90°, по обозначению углов уже понятно, что это противоположные углы и, значит, наша фигура прямоугольник. Но даны ещё два угла, которые дополняют друг друга ∠ADB=15° и ∠BDC=75°. Сумма этих углов равна 90°. То есть имеем четырёхугольник у которого известно, что три угла равны 90°, значит это прямоугольник, а у прямоугольника все стороны параллельны, т.е. AD║BC.