Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Во по геометрии ОЧЕНЬ К плоскости ромба ABCD, у которого угол А равен 45, АВ=8см градусов, проведен перпендикуляр МС длиной 7см. Найдите расстояние от точки М до прямой
построй рисунок ---начни с угла А=45---углы В С D
точка М висит над углом С---найти расстояние от М до АВ
сделай дополнительное построение---над вершиной D построй точку М1
(это параллельный перенос)---тогда М1D=MC=7см---из вершины D опусти перпендикуляр на АВ в точку К (это расстояние от D до АВ)--тогда DK это
проекция М1К на плоскость ромба--это и есть расстояние от т. М(М1)
до прямой АВ
теперь длина М1К=
треуг.АКD прямоугольн.--угол К =90--угол А=45
сторона АD=8см, т.к. все стороны ромба равны--тогда КD=AD*sin45=8*√2/2=4√2 см
треуг.КDM1 прямоугольн---угол КDM1=90(это перпендикуляр к плоскости)
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
nu
Online-Otvet.ru
Поиск по во Категории
Задать во О проекте
Обратная связь
home Во и ответы folder Геометрия
kndeta
kndeta
Во по геометрии ОЧЕНЬ К плоскости ромба ABCD, у которого угол А равен 45, АВ=8см градусов, проведен перпендикуляр МС длиной 7см. Найдите расстояние от точки М до прямой
построй рисунок ---начни с угла А=45---углы В С D
точка М висит над углом С---найти расстояние от М до АВ
сделай дополнительное построение---над вершиной D построй точку М1
(это параллельный перенос)---тогда М1D=MC=7см---из вершины D опусти перпендикуляр на АВ в точку К (это расстояние от D до АВ)--тогда DK это
проекция М1К на плоскость ромба--это и есть расстояние от т. М(М1)
до прямой АВ
теперь длина М1К=
треуг.АКD прямоугольн.--угол К =90--угол А=45
сторона АD=8см, т.к. все стороны ромба равны--тогда КD=AD*sin45=8*√2/2=4√2 см
треуг.КDM1 прямоугольн---угол КDM1=90(это перпендикуляр к плоскости)
КМ1-гипотенуза КМ1=√(М1D)^2+(DK)^2=√( 7^2+(4√2)^2)=√49+32=√81=9см
расстояние от точки М до прямой АВ ==9см