Развёртка есть :) Это самое простое. на рис.2 - диагональное сечение пирамиды, через диагональ основания и вершину Диагональ основания по Пифагору d² = a² + a² d = a√2 стороны длиной а см Видно, что это прямоугольный треугольник, точно такой же, как половинка основания Его площадь через катеты S = 1/2*a*a Его площадь через гипотенузу и высоту к ней S = 1/2*d*h a*a = d*h a² = a√2*h h = a/√2 - это высота пирамиды рис 3. Боковая грань пирамиды представляет собой равносторонний треугольник - ведь все рёбра равны а Для нахождения апофемы возьмём половину этого треугольника По т. Пифагора a² = (a/2)² + f² f² = 3/4*a² f = a√3/2 --- Площадь - это основание и 4 боковушки S = a² + 4*1/2*a*f = a² + 2*a*a√3/2 = a²(1 + √3) Объём V = 1/3*a²*h = 1/3*a²*a/√2 = a³/(3√2)
Средняя линия l = (14 + 30)/2 = 44/2 = 22 см Рассмотрим треугольник, образованный диагональю трапеции, боковой стороной и верхним основанием. Средняя линия этого треугольника является отрезком средней линии трапеции. Длина части средней линии трапеции, принадлежащей к этому треугольнику равна 14/2 = 7 см Проведём вторую диагональ трапеции, и теперь 7 см среднее линии будут отсечены с другой стороны. А средняя линия трапеции будет разбита на три отрезка длиной 7 см - слева 7 см - справа 22 - 7 - 7 = 8 см - посередине.
на рис.2 - диагональное сечение пирамиды, через диагональ основания и вершину
Диагональ основания по Пифагору
d² = a² + a²
d = a√2
стороны длиной а см
Видно, что это прямоугольный треугольник, точно такой же, как половинка основания
Его площадь через катеты
S = 1/2*a*a
Его площадь через гипотенузу и высоту к ней
S = 1/2*d*h
a*a = d*h
a² = a√2*h
h = a/√2 - это высота пирамиды
рис 3.
Боковая грань пирамиды представляет собой равносторонний треугольник - ведь все рёбра равны а
Для нахождения апофемы возьмём половину этого треугольника
По т. Пифагора
a² = (a/2)² + f²
f² = 3/4*a²
f = a√3/2
---
Площадь - это основание и 4 боковушки
S = a² + 4*1/2*a*f = a² + 2*a*a√3/2 = a²(1 + √3)
Объём
V = 1/3*a²*h = 1/3*a²*a/√2 = a³/(3√2)
l = (14 + 30)/2 = 44/2 = 22 см
Рассмотрим треугольник, образованный диагональю трапеции, боковой стороной и верхним основанием.
Средняя линия этого треугольника является отрезком средней линии трапеции. Длина части средней линии трапеции, принадлежащей к этому треугольнику равна 14/2 = 7 см
Проведём вторую диагональ трапеции, и теперь 7 см среднее линии будут отсечены с другой стороны.
А средняя линия трапеции будет разбита на три отрезка длиной
7 см - слева
7 см - справа
22 - 7 - 7 = 8 см - посередине.