Пусть ABCD -трапеция , AD || BC , BC< AD ; P(ABCD) =20 ,S((ABCD) =20 . трапецию можно вписать окружность; MN ⊥ AD ; O ∈ [ MN ], O -пересечения диагоналей(MN проходит через O). M∈ [AD] ,N∈ [BC].
ON -?
S =(AB +BC) /2 *H ,где H - высота трапеции . По условию задачи трапеция описана окружности , следовательно : AD+BC =(AB +CD) = P/2 =20/2 =10. AB =CD =5 ; S =(AB +BC) /2 *H ; 20 =5*H ⇒ H =4. Проведем BE ⊥AD и CF ⊥ AD, AE =DF =√(AB² -BE)² =√(AB² -H²) =√(5² -4²) =3 . AD -BC =2*3 =6. { AD -BC =6 ; AD +BC =10 ⇒AD =8 ; BC =2. ΔAOD подобен ΔCOB : BC/AD =ON/ OM ⇔BC/AD =ON/ (H -ON) . 2/8 =ON/ (4 -ON) ⇒ON =0,8.
трапецию можно вписать окружность;
MN ⊥ AD ; O ∈ [ MN ], O -пересечения диагоналей(MN проходит через O).
M∈ [AD] ,N∈ [BC].
ON -?
S =(AB +BC) /2 *H ,где H - высота трапеции .
По условию задачи трапеция описана окружности , следовательно :
AD+BC =(AB +CD) = P/2 =20/2 =10.
AB =CD =5 ;
S =(AB +BC) /2 *H ;
20 =5*H ⇒ H =4.
Проведем BE ⊥AD и CF ⊥ AD,
AE =DF =√(AB² -BE)² =√(AB² -H²) =√(5² -4²) =3 .
AD -BC =2*3 =6.
{ AD -BC =6 ; AD +BC =10 ⇒AD =8 ; BC =2.
ΔAOD подобен ΔCOB :
BC/AD =ON/ OM ⇔BC/AD =ON/ (H -ON) .
2/8 =ON/ (4 -ON) ⇒ON =0,8.
ответ: 0,8.
1)т.к. окружность вписана в четырёхугольник, то суммы противоположных сторон равны, т.е. ав+cd=bc+ad=6+24=30 (см)
т.к. ав=cd, то ав=cd =30: 2=15 (см).
2) из δ авв1-прям.: ав=15, ав1=(ad-bc)/2=(24-6): 2=9(cм), тогда
вв1= √(ав²-ав1²)=√15²-9²=√144=12(см).
3) sтрап.= ½· (ad+bc)·bb1=½·30·12=180 (см²)
4) радиус ,вписанной в трапецию ,окружности равен половине её высоты ,
т.е. r=½·bb1=6(см).
ответ: 6 см; 180 см².