Образующая прямого кругового усеченного конуса составляет с плоскостью большего основания угол, равный 45 градусов. Радиусы оснований равны 3 см и 6 см. Найдите: 1) площадь боковой поверхности 2) объем усеченного конуса
По условию BE = EC, поэтому т. Е лежит на серединном перпендикуляре к BC. Раз BE = AD > BC/2, то точка Е может лежать в двух разных полуплоскостях относительно BC.
ΔCEB - правильный, поскольку BE = EC = BC. Поэтому ∠ECB = ∠CBE = ∠BEC = 180°:3 = 60°.
∠DCB = ∠CBA = 90°, как углы квадрата ABCD.
Первый случай: d(E, AD) < AB (точка Е в левой полуплоскости от BC, по моему рисунку).
∠DCE = ∠DCB-∠ECB = 90°-60° = 30°.
ΔDCE - равнобедренный (EC = CD), поэтому углы при основании DE равны;
Дан ромб АВСД, диагональ Ас делит его на два равных треугольника АВСД и АДС, в равносторонний треугольник АВС вписана окружность, по формуле радиус вписанной в правильный треугольник окружности равен:а/2корня; где а- сторона ромба. Откуда, а=2корня3, т.к. Радиус равен1. Т.к. Треугольник равносторонний, то АС-диагональ, равна 2корня из 3 Проведем высоту ВН, получается прямоугольный треугольник по теореме Пифагора ВН=корень из АВ квадрат-АН квадрат=корень из 12-3=3. Т.к. Ромб-частный случай параллелограмма, то его диагонали точкой пересечения делятся пополам, значит диагональ ВД=6. Площадь ромба равна произведение диагоналей напополам, т.е. 6корней из 3
Все стороны квадрата равны: AB = BC = CD = AD.
Сумма внутренних углов треугольника равна 180°.
По условию BE = EC, поэтому т. Е лежит на серединном перпендикуляре к BC. Раз BE = AD > BC/2, то точка Е может лежать в двух разных полуплоскостях относительно BC.
ΔCEB - правильный, поскольку BE = EC = BC. Поэтому ∠ECB = ∠CBE = ∠BEC = 180°:3 = 60°.
∠DCB = ∠CBA = 90°, как углы квадрата ABCD.
Первый случай: d(E, AD) < AB (точка Е в левой полуплоскости от BC, по моему рисунку).∠DCE = ∠DCB-∠ECB = 90°-60° = 30°.
ΔDCE - равнобедренный (EC = CD), поэтому углы при основании DE равны;
∠DEC = ∠EDC = (180°-∠DCE):2 = (180°-30°):2 = 150°:2 = 75°.
Аналогично ∠ABE = ∠ABC-∠CBE = 30°,
ΔABE - равнобедренный (BA = BE), ∠BAE = ∠BEA = (180°-∠ABE):2 = 75°.
∠AED, ∠DEC, ∠CEB и ∠BEA составляют полный угол (360°), поэтому
∠AED = 360°-(∠DEC+∠CEB+∠BEA) = 360°-(75°+60°+75°) = 360°-210° = 150°.
Второй случай: d(E, AD) > AB (точка Е в правой полуплоскости от BC, по моему рисунку).∠DCE = ∠DCB+∠ECB = 90°+60° = 150°.
ΔDCE - равнобедренный (EC = CD), поэтому углы при основании DE равны;
∠DEC = ∠EDC = (180°-∠DCE):2 = (180°-150°):2 = 30°:2 = 15°.
Аналогично ∠ABE = ∠ABC+∠CBE = 150°,
ΔABE - равнобедренный (BA = BE), ∠BAE = ∠BEA = (180°-∠ABE):2 = 15°.
∠AED, ∠DEC и ∠BEA составляют ∠CEB = 60°, поэтому
∠AED = ∠CEB-(∠DEC+∠BEA) = 60°-(15°+15°) = 60°-30° = 30°.
ответ: 150° или 30°.