Расстояние от точки до прямой – это длина перпендикуляра, проведенного из данной точки к данной прямой. В правильном шестиугольнике прямая АС перпендикулярна плоскости СС1D1D. Проведем прямую СН перпендикулярно прямой С1D. Точка Н - середина диагонали квадрата СС1D1D. Значит расстояние от точки А до прямой С1D равно отрезку АН, перпендикулярному к С1D.
По Пифагору АН=√(АС²+СН²). АС=√3 (короткая диагональ правильного шестиугольника со стороной =1). СН=√2/2 (половина диагонали квадрата 1х1).
1. Если прямая перпендикулярна к плоскости, то она перпендикулярна к каждой прямой в этой плоскости, поэтому все треугольники AOK, BOK, COK и DOK с прямым углом.
2. К тому же они все одинаковы, так как имеют общий катет OK, диагонали квадрата также одинаковы и делятся в точке пересечения пополам OA=OB=OC=OD.
Значит, KA=KB=KC=KD, поэтому необходимо рассчитать только одно расстояние.
3. Проведём расчёты в треугольнике AOK. Если сторона квадрата равна 14 см, то диагональ квадрата равна 14√2 см. AO равно половине диагонали.
4. По теореме Пифагора рассчитаем KA:
KA= (6² + (14√2) делить на 2)² и это все под знаком корня = 36 + 7 (√2)² и все это под знаком корня = 36 +7*2=√50 = 7 см.
Расстояние от точки до прямой – это длина перпендикуляра, проведенного из данной точки к данной прямой. В правильном шестиугольнике прямая АС перпендикулярна плоскости СС1D1D. Проведем прямую СН перпендикулярно прямой С1D. Точка Н - середина диагонали квадрата СС1D1D. Значит расстояние от точки А до прямой С1D равно отрезку АН, перпендикулярному к С1D.
По Пифагору АН=√(АС²+СН²). АС=√3 (короткая диагональ правильного шестиугольника со стороной =1). СН=√2/2 (половина диагонали квадрата 1х1).
Следовательно, АН=√(3+(2/4)) = √14/2.
ответ: √14/2.
Объяснение:
1. Если прямая перпендикулярна к плоскости, то она перпендикулярна к каждой прямой в этой плоскости, поэтому все треугольники AOK, BOK, COK и DOK с прямым углом.
2. К тому же они все одинаковы, так как имеют общий катет OK, диагонали квадрата также одинаковы и делятся в точке пересечения пополам OA=OB=OC=OD.
Значит, KA=KB=KC=KD, поэтому необходимо рассчитать только одно расстояние.
3. Проведём расчёты в треугольнике AOK. Если сторона квадрата равна 14 см, то диагональ квадрата равна 14√2 см. AO равно половине диагонали.
4. По теореме Пифагора рассчитаем KA:
KA= (6² + (14√2) делить на 2)² и это все под знаком корня = 36 + 7 (√2)² и все это под знаком корня = 36 +7*2=√50 = 7 см.