В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
tinita15
tinita15
01.11.2021 16:47 •  Геометрия

Обчисліть довжину сторони MP трикутника MNP, якщо MN=7см NP=3 корінь з 2 кут N=45°

Показать ответ
Ответ:
angelinaoguzova
angelinaoguzova
15.11.2020 12:35

Пусть в прямоугольнике ABCD биссектрисы пересекаются в точках E,F,G,H. Докажем, что EFGH - квадрат. В треугольнике AFD углы A и D равны 45 градусам, тогда угол F равен 90 градусам. Аналогично, в треугольнике BCH углы B и C равны 45 градусам, а угол H равен 90 градусам. В треугольнике ABE углы A и B равны 45 градусам, тогда угол E равен 90 градусам. Тогда и угол FEH равен 90 градусам (вертикальные углы равны). Аналогично, в треугольнике CDG углы C и D равны 45 градусам, тогда угол G равен 90 градусам и угол FGH равен 90 градусам. Таким образом, все углы четырехугольника EFGH равны 90 градусам и этот четырехугольник является прямоугольником.  

Теперь докажем, что соседние стороны EF и FG этого прямоугольника равны. Треугольники ABE и CDG равны, так как каждый из них - равнобедренный и прямоугольный и их гипотенузы равны. Тогда AE=DG. Треугольник ADF является равнобедренным и прямоугольным, тогда AF=DF. Тогда EF=AF-AE, GF=DF-DG, откуда EF=GF, треугольник EFG равнобедренный и EF=FG. Так как в прямоугольнике EFGH соседние стороны равны, этот прямоугольник - квадрат, что и требовалось доказать.

Объяснение:


Докажите, что биссектрисы углов прямоугольника своим пересечением образуют квадрат. С чертежом
0,0(0 оценок)
Ответ:
456akcyka
456akcyka
19.01.2023 02:35
Проведем DK⊥SC.
ΔDKC = ΔBKC по двум сторонам и углу между ними (DC = BC как стороны квадрата, КС - общая, углы при вершине С равны, так как боковые грани - равные равнобедренные треугольники).
Тогда и ВК⊥SC, значит
∠DKB - линейный угол двугранного угла при боковом ребре пирамиды.
Обозначим его α.
sinα = 12/13

SC⊥DKB (ребро SC перпендикулярно двум пересекающимся прямым этой плоскости), ⇒
SC⊥OK.
Тогда отрезок ОК параллелен высоте треугольника ASC, проведенной из вершины А (обозначим ее h), и равен ее половине.
Sasc = 1/2 · SC · h = 1/2 · SC · 2OK = SC·OK = 7√13        ( 1 )

ΔOKD: OK = KD · cos (α/2)

Угол α тупой, т.к. sin(α/2) = OD/DK > OD/DC = 1/√2
cos α  = - √(1 - sin²α) = - √(1 - 144/169) = - √(25/169) = - 5/13

cos (α/2) = √((1 + cos α)/2) = √((1 - 5/13)/2) = √(8/26) = √(4/13) = 2/√13

Вернемся к ΔOKD:
ОК = KD · cos (α/2) = KD · 2/√13
Подставим в равенство (1):
SC · KD · 2/√13 = 7√13
SC · KD = 7√13 · √13 / 2 = 91/2
Но KD - высота боковой грани SCD, проведенная к ребру SC.
Sscd = 1/2 · SC · KD = 1/2 · 91/2 = 91/4
Тогда площадь боковой поверхности:
Sбок = 4 · Sscd = 4 · 91/4 = 91
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота