№ 5 - ответ: высота равна 2 см; углы треугольника : 30°, 30°, 120°.
Объяснение:
№ 4.
Перпендикуляр, опущенный из вершины прямого угла на гипотенузу, является средней пропорциональной величиной между отрезками, на которые основание перпендикуляра делит гипотенузу.
где 4√3)/2 - это половина длины основания, т.к. в равнобедренном треугольнике высота, опущенная на основание, делит его пополам;
2) Высота равна 2 см, а боковая сторона равна 4 см. Значит, высота лежит против угла 30°, т.к. катет, лежащий против угла 30°, равен половине гипотенузы.
Так как треугольник равнобедренный, то и второй угол (при основании) также равен 30°.
1. Задача 1. решена пользователем ХироХамаки Новичок (решение в файле)
2. Условие задачи 2. неточное. Должно быть: Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α. ВО - искомое расстояние. ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах. ∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника. АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника) ΔАВН: по теореме Пифагора ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4 ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда ∠АВО = ∠АСО = 60°. ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит АВ = АС = 6.
№ 4 - ответ: а = 3√5; b = 6√5
№ 5 - ответ: высота равна 2 см; углы треугольника : 30°, 30°, 120°.
Объяснение:
№ 4.
Перпендикуляр, опущенный из вершины прямого угла на гипотенузу, является средней пропорциональной величиной между отрезками, на которые основание перпендикуляра делит гипотенузу.
Если х - длина перпендикуляра, то:
х = √ (3 · 12) = √ 36 = 6 см.
По теореме Пифагора находим катеты:
а = √(3² + 6²) = √(9+36) = √45 √9·5= 3√5
b = √(12² + 6²) = √(144+36) = √180 = √36·5 = 6√5
ответ: а = 3√5; b = 6√5
№ 5
1) По теореме Пифагора находим высоту:
h = √[(4² - ((4√3)/2)²] = √ [16 - (2√3)²] = √ (16 - 4· 3) = √4 = 2 см,
где 4√3)/2 - это половина длины основания, т.к. в равнобедренном треугольнике высота, опущенная на основание, делит его пополам;
2) Высота равна 2 см, а боковая сторона равна 4 см. Значит, высота лежит против угла 30°, т.к. катет, лежащий против угла 30°, равен половине гипотенузы.
Так как треугольник равнобедренный, то и второй угол (при основании) также равен 30°.
Находим 3-й угол:
180 (сумма внутренний углов треугольника) - 30 - 30 = 120°.
ответ: высота равна 2 см; углы треугольника : 30°, 30°, 120°.
ХироХамаки Новичок
(решение в файле)
2. Условие задачи 2. неточное. Должно быть:
Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α.
ВО - искомое расстояние.
ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах.
∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника.
АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника)
ΔАВН: по теореме Пифагора
ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4
ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда
∠АВО = ∠АСО = 60°.
ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит
АВ = АС = 6.