Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
96 АЕ = ЕК.
Докажите, что прямоугольник ABCD и треугольник AKD равновелики.
ответ : Равновеликими называются фигуры, имеющие равные площади.
Проведем КН⊥EF и рассмотрим треугольники АВЕ и КНЕ : ∠АВЕ = ∠КНЕ = 90°, АЕ = ЕК по условию, ∠АЕВ = ∠КЕН как вертикальные, ⇒ ΔАВЕ = ΔΔКНЕ по гипотенузе и острому углу.
Из равенства треугольников следует, что КН = АВ.
АВ = CD, значит КН = CD.
Рассмотрим треугольники KHF и DCF : ∠KHF = ∠DCF = 90°, KH = CD, ∠KFH = ∠DFC как вертикальные, значит ΔKHF = ΔDCF по катету и противолежащему острому углу.
Итак, Sabe = Skhe - зеленые треугольники, Skhf = Sdcf - желтые треугольники.
Площадь прямоугольника состоит из площади голубой трапеции, площади зеленого треугольника и площади желтого треугольника.
Из площадей таких же фигур состоит и площадь треугольника AKD, значитSabcd = Sakd.
Или можно записать все это в обозначениях : Sabcd = Saefd + Sabe + SdcfSakd = Saefd + Skeh + SkfhSabe = Skeh, Sdcf = Skfh, ⇒ Sabcd = Sakb.
Объяснение:
вот сам писал
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0