1. В тексте исправил вопрос на "найти длину проекции наклонной", а то получается , что искать нужно известную величину. Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см. 2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
В правильной пирамиде ЕАВС боковые грани - прямоугольные равнобедренные треугольники с катетами 7√2 см, значит гипотенузы в них (стороны основания пирамиды) равны 7√2·√2=14 см. В тр-ке ЕАВ опустим высоту ЕМ, а в тр-ке ЕМС проведём высоту МК. М∈АВ, К∈ЕС. В тр-ке ЕАВ ЕМ=ab/c=ЕА·ЕВ/АВ=(7√2)²/14=7 см. В правильном тр-ке АВС высота СМ=а√3/2=14√3/2=7√3 см. Высота пирамиды ЕО опускается в центр вписанной в основание окружности. r=МО=СМ/3=7√3/3 см. В тр-ке ЕМО ЕО=√(ЕМ²-МО²)=√(7²-(7√3/3)²)=7√6/3 см. Площадь тр-ка ЕМС можно вычислить двумя через высоты ЕО и МК, запишем их, сразу приравняв друг к другу: СМ·ЕО/2=ЕС·МК/2, МК=СМ·ЕО/ЕС, МК=(7√3·7√6)/(3·7√2)=7√18/3√2=7√9/3=7 см. МК - расстояние между скрещивающимися рёбрами АВ и ЕС. В правильной пирамиде все подобные расстояния равны. ответ: 7 см.
Угол между наклонной и плоскостью - это угол между наклонной и ее проекцией на плоскость. Имеем прямоугольный треугольник: гипотенуза 8 см, один угол 60°. ВТОРОЙ ОСТРЫЙ 30°. Катет, лежащий против него равен половине гипотенузы, 8/2 = 4 см.Это проекция наклонной. Расстояние (это длина перпендикуляра) равно 4 * sin 60° = 2√3 см.
2. строим линейный угол двугранного угла и ставим размеры. Получаем прямоугольный треугольник с катетом 4 м и гипотенузой 8 м. Значит, угол равен 30°.
В тр-ке ЕАВ опустим высоту ЕМ, а в тр-ке ЕМС проведём высоту МК. М∈АВ, К∈ЕС.
В тр-ке ЕАВ ЕМ=ab/c=ЕА·ЕВ/АВ=(7√2)²/14=7 см.
В правильном тр-ке АВС высота СМ=а√3/2=14√3/2=7√3 см.
Высота пирамиды ЕО опускается в центр вписанной в основание окружности. r=МО=СМ/3=7√3/3 см.
В тр-ке ЕМО ЕО=√(ЕМ²-МО²)=√(7²-(7√3/3)²)=7√6/3 см.
Площадь тр-ка ЕМС можно вычислить двумя через высоты ЕО и МК, запишем их, сразу приравняв друг к другу:
СМ·ЕО/2=ЕС·МК/2,
МК=СМ·ЕО/ЕС,
МК=(7√3·7√6)/(3·7√2)=7√18/3√2=7√9/3=7 см.
МК - расстояние между скрещивающимися рёбрами АВ и ЕС. В правильной пирамиде все подобные расстояния равны.
ответ: 7 см.