Обозначим скрещивающиеся прямые АВ и СD. Отметим на прямой АВ точку О.
1. Через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну. Проведем эту плоскость через точку О и прямую СD.
2. Соединим центр СD с точкой О. От концов СD проведем отрезки, параллельные и равные первой прямой. Обозначим их концы С₁ и D₁ соединим.
Мы получили две пересекающиеся прямые АВ и С₁D₁, через которые можно провести плоскость, и притом только одну. Проведенная таким образом плоскость параллельна прямой СD.
1) Медианы в точке пересечения делятся в отношение 2:1, считая от вершины. Расстояние от точки пересечения медиан до вершины равно 12 см, это составляет 2/3 всей медианы. Значит, медиана, проведенная к основанию равнобедренного треугольника ( а она и высота) равна 18 см. ( см. рисунок) Половина основания 8. По теореме Пифагора часть медианы проведенной к боковой стороне равна 10. Это 2/3 всей медианы. Вся медиана равна 15.
2) Через середину боковой стороны проведем перпендикуляр длиной 9, этот перпендикуляр параллелен высоте равнобедренного треугольника и является средней линией прямоугольного треугольника. Значит высота 18 см. Точка пересечения медиан делит медиану ( а значит и высоту), проведенную к основанию в отношении 2:1. Значит искомое расстояние расстояние равно 12 см.
Обозначим скрещивающиеся прямые АВ и СD. Отметим на прямой АВ точку О.
1. Через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну. Проведем эту плоскость через точку О и прямую СD.
2. Соединим центр СD с точкой О. От концов СD проведем отрезки, параллельные и равные первой прямой. Обозначим их концы С₁ и D₁ соединим.
Мы получили две пересекающиеся прямые АВ и С₁D₁, через которые можно провести плоскость, и притом только одну. Проведенная таким образом плоскость параллельна прямой СD.
Расстояние от точки пересечения медиан до вершины равно 12 см, это составляет 2/3 всей медианы. Значит, медиана, проведенная к основанию равнобедренного треугольника ( а она и высота) равна 18 см. ( см. рисунок)
Половина основания 8.
По теореме Пифагора часть медианы проведенной к боковой стороне равна 10. Это 2/3 всей медианы. Вся медиана равна 15.
2) Через середину боковой стороны проведем перпендикуляр длиной 9, этот перпендикуляр параллелен высоте равнобедренного треугольника и является средней линией прямоугольного треугольника. Значит высота 18 см. Точка пересечения медиан делит медиану ( а значит и высоту), проведенную к основанию в отношении 2:1. Значит искомое расстояние расстояние равно 12 см.