нужно ( 1.в основании прямой призмы лежит ромб со стороной 6(см) и углом 45 градусов, высота призмы 12 см, найтиплощадь призмы. 2).стороны оснований правильной 4-угольной пирамиды равны 4 (см) а боковое ребро равно 6 (см). найдите площадь.
Объём пирамиды равен 1/3 произведения площади основания на высоту. Есть такая формула: V = 1/3 * S * H Эту формулу надо просто выписать на шпору, и постараться запомнить.
Площадь основания дана в условии. Следовательно, задача сводится к нахождению высоты пирамиды. Но перед этим рассмотрим подробнее основание.
Площадь ромба, лежащего в основании пирамиды, (есть такая формула для площади параллелограмма, а ромб есть частный случай параллелограмма) S = a * h, где а - сторона, h - высота. Отсюда найдём высоту ромба. На чертеже это отрезок Н Н1. h = S / a = 600 / 25 = 24 см
Нас интересует половина высоты, ОН = h/2 = 24/2 = 12 см.
Теперь рассматриваем треугольник ОНМ. Про него мы знаем что он прямоугольный (потому что высота пирамиды МО перпендикулярна плоскости основания - это по определению). А также знаем что МН = 15 (задано в условии), ОН = 12 (нашли в предыдущем действии). Отсюда по теореме Пифагора находим высоту пирамиды МО = корень (15^2 - 12^2) = корень ( 225 - 144) = корень(81) = 9 см.
Готово. Подставляем в формулу, получем V = 1/3 * S * MO = 1/3 * 600 * 9 = 1800 см3 -- это и есть ответ.
Объём пирамиды равен 1/3 произведения площади основания на высоту. Есть такая формула:
V = 1/3 * S * H
Эту формулу надо просто выписать на шпору, и постараться запомнить.
Площадь основания дана в условии. Следовательно, задача сводится к нахождению высоты пирамиды. Но перед этим рассмотрим подробнее основание.
Площадь ромба, лежащего в основании пирамиды, (есть такая формула для площади параллелограмма, а ромб есть частный случай параллелограмма) S = a * h, где а - сторона, h - высота. Отсюда найдём высоту ромба. На чертеже это отрезок Н Н1.
h = S / a = 600 / 25 = 24 см
Нас интересует половина высоты, ОН = h/2 = 24/2 = 12 см.
Теперь рассматриваем треугольник ОНМ. Про него мы знаем что он прямоугольный (потому что высота пирамиды МО перпендикулярна плоскости основания - это по определению). А также знаем что МН = 15 (задано в условии), ОН = 12 (нашли в предыдущем действии). Отсюда по теореме Пифагора находим высоту пирамиды МО = корень (15^2 - 12^2) = корень ( 225 - 144) = корень(81) = 9 см.
Готово. Подставляем в формулу, получем
V = 1/3 * S * MO = 1/3 * 600 * 9 = 1800 см3 -- это и есть ответ.
Обозначим : Т.к. AD - биссектриса ,то ∠ BAM = ∠MAC = α ;
∠BCD = ∠ DCE = β ( СЕ - прдолжение стороны АС)
∠ ACB = ω ; ∠ ADC = 20° ( по условию задачи )
При решении используем свойства углов треугольника : 1)В любом треугольнике сумма внутренних углов = 180° и 2) Внешний угол треугольника равен сумме двух внутренних , не смежных с ним..
1 .)Δ АВС : ∠А= 2 α , ∠АСВ = ω , ∠ АВС = х ( Его надо найти по уловию)
2 )Δ DMC : ∡ MDC=20° , ∠BCD = β
3 )∠Внешний ∠ВСЕ = 2 β - CD - биссектриса ∠ВСЕ
4/ УГЛы ∠АСВ и ∠ВСЕ - смежные.
1)Δ АВС : 2 α + ω + х = 180°
2) Δ DMC : 20° + β+ ∠ DMC = 180° ⇒ ∠DMC = 180°- (20°+ β )
3) ∠BCE =∠CAB +∠ABC ⇒ 2 β = 2 α +x ⇒ x = 2 β - 2 α = 2 (β - α )
4) ω + 2 β = 180°
ΔАDC : Сумма углов : 20°+α + (β+ω)=180°
20°+ α + β + 180°-2β=180°
20° +α - β =0 ⇒ β - α =20°
но х= 2 (β - α) ⇒ х= 2 (20°) = 40 °
ответ : ∠АВС =40°