Весь "секрет" в том биссектрисы отсекают от трапеции равнобедренные треугольники, потому что биссектриса с боковой стороной и с обоими основаниями образует одинаковые углы. То есть меньшее основание равно сумме боковых сторон, то есть 13 + 20 = 33; Если теперь провести высоты из концов мньшего основания, то трапеция разобьётся на прямоугольник со сторонами 33 и 12, и два треугольника. Один имеет в качестве гипотенузы боковую сторону 13, и высоту трапеции 12, как один из катетов, откуда второй катет равен 5, аналогично во втором треугольнике гипотенуза 20, один из катетов 12, то есть второй катет 16. То есть проекции боковых сторон на большее основание равны 5 и 16. Ясно, что большее основание равно 33 + 5 + 16 = 54; собственно, уже все найдено. Площадь трапеции (33 + 54)*12/2 = 522;
1) Для нахождения координат требуется решить систему данных уравнений. Из второго уравнения находим x=3y-4, Подставляя это выражение для x в первое уравнение, получаем уравнение 4-3y+2y-4=-y=0, откуда y=0. Подставляя найденное значение y в любое из данных уравнений, находим x=-4. Таким образом, точка пересечения прямых имеет координаты (-4,0). 2) У любой точки первой четверти обе координаты положительны, у точек 2 четверти x<0, y>0, у точек 3 четверти x<0,y<0, у точек 4 четверти x>0,y<0. У точки С x>0, y<0. Поэтому точка С расположена в 4 координатной четверти.
То есть меньшее основание равно сумме боковых сторон, то есть 13 + 20 = 33;
Если теперь провести высоты из концов мньшего основания, то трапеция разобьётся на прямоугольник со сторонами 33 и 12, и два треугольника. Один имеет в качестве гипотенузы боковую сторону 13, и высоту трапеции 12, как один из катетов, откуда второй катет равен 5, аналогично во втором треугольнике гипотенуза 20, один из катетов 12, то есть второй катет 16. То есть проекции боковых сторон на большее основание равны 5 и 16.
Ясно, что большее основание равно 33 + 5 + 16 = 54; собственно, уже все найдено. Площадь трапеции (33 + 54)*12/2 = 522;
2) У любой точки первой четверти обе координаты положительны, у точек 2 четверти x<0, y>0, у точек 3 четверти x<0,y<0, у точек 4 четверти x>0,y<0. У точки С x>0, y<0. Поэтому точка С расположена в 4 координатной четверти.