нужен ответ
1. Найти площадь квадрата с диагональю 12 см
2. Найти площадь ромба с диагоналями 12 см и 10 см.
3. Стороны параллелограмма равны 12см i 16см, а меньше, высота - 3 см. Найдите большую высоту параллелограмма
4. Площадь треугольника равна 26 см². Найдите сторону треугольника, если высота, проведенная к ней, равна 4 см.
5. Меньшая основа равносторонней трапеции равна 8 см. Точка пересечения диагоналей трапеции удаленная от основ на 2 см и 3 см. Найдите площадь трапеции.
2. Затем с циркуля с двух концов основания восстанавливаем перпендикуляры к самому основанию (как это делать Вы знаете).
3. С линейки отмеряем известную высоту на обоих перпендикулярах, начиная от основания.
4 Соединяем вершины высот прямой линией с линейки. Полученная линия параллельна основанию.
5. Место пересечения этой линии и полуокружности - это вершина нужного треугольника. Соединим её с концами основания.
6. С циркуля нарисуем второй полукруг к вершине от другого конца основания так, чтобы оба полукруга пересекались сверху и снизу. Соединим точки их пересечения. Получится высота треугольника.
Ось X - AB
Ось Y - AD
Ось Z - AA1
Координаты точек
B(1;0;0)
C1(1;1;1)
D(0;1;0)
A1(0;0;1)
D1(0;1;1)
B1(1;0;1)
Вектора
АD1(0;1;1) длина √2
A1B(1:0;-1) длина √2
DD1(0;0;1)
Косинус Угла между AD1 и A1B
1/√2/√2=1/2 угол 60 градусов.
Уравнение плоскости А1ВС1
ах+by+cz+d=0
Подставляем координаты точек
c+d=0
a+d=0
a+b+c+d=0
Пусть d= -1 тогда с=1 а=1 b= -1
x-y+z-1=0
Синус угла между DD1 и А1ВС1
1/√3=√3/3 угол arcsin(√3/3)
Уравнение плоскости АВС
z=0
Плоскость АВ1D1
ax+by+cz=0
Подставляем координаты точек
а+с=0
b+c=0
Пусть с= -1 тогда а=1 b=1
x+y-z=0
Косинус угла между искомыми плоскостями
1/√3=√3/3 угол arccos(√3/3)