No1. Даны векторы ⃗=(2;1;−1),⃗⃗=(4;2;−6). Найдите длину вектора ⃗+0,5⃗⃗.No2. Даны векторы р⃗⃗=(0;−4;3),⃗=(12;−12;1). Найдите длину вектора ⃗+2⃗.No3. Даны точки А (-2; 0; 4), В(0; -2;-2). Вычислите расстояние от точки С(-1; 1; 0) до середины отрезка АВ.No4. Даны точки А (1; -3; 2), В(-3; 3;4). Вычислите расстояние от точки М(1; -1; 1) до середины отрезка АВ.No1. Даны точки А (1; -3; -1), В(-1; 3; -3). Вычислить расстояние от точки М (1; 1; -1) до середины отрезка АВ.No2. Даны точки D(3; -2;1) и C(4; -2; 2). Найти координаты вектора
1) Можно определить угол между двумя лучами из одной точки как часть полного угла.
Тогда рассматриваются углы от О° до 360° (невыпуклые - от 0° до 180°, выпуклые - от 180° до 360°).
Можно определить угол как поворот луча от начального положения против часовой (положительное направление) или по часовой стрелке (отрицательное).
Тогда угол может принимать любые положительные и отрицательные значения.
Поворот при котором луч возвращается в начальное положение (то есть поворот на полный угол) называется оборот.
2) 450° = 5/4 оборота против часовой стрелки = 5/2 п
–225° = 5/8 оборота по часовой стрелке = -5/4 п
3) 1° =1/360 полного угла
4) 1 радиан - в единичной окружности угловая мера дуги длиной 1.
(то есть в единичной окружности центральный угол, опирающийся на дугу длиной 1)
5-6) Угловая мера полного угла в радианах 2п (длина единичной окружности). Угловая мера полного угла в градусах 360°.
180°=п(рад)
ф°/180° = x(рад)/п
ф=30°, x =30° *п/180° =п/6
x=п/4, ф =п/4 *180°/п =45°
В правильной усеченной четырехугольной пирамиде диагонали оснований равны 10 см и 6 см, а боковая грань образует с плоскостью основания угол 60 градусов. Найти высоту усеченной пирамиды.
Объяснение:
1) АВСDA₁B₁C₁D₁- усеченная пирамида , Точки О и О₁ -точки пересечения диагоналей оснований Т.к пирамида правильная , то основания кавдраты.
АВСD- нижнее основание , по т. Пифагора АВ=√(10²:2)=5√2 (см).
A₁B₁C₁D₁-верхнее основание , по т. Пифагора A₁B₁=√(6²:2)=3√2 (см).
2) Проведем через точки О и О₁ отрезки МН и М₁Н₁ перпендикулярно сторонам квадратов.Тк О₁Н₁ ⊥ВС, то SH⊥ВС по т. о трех перпендикулярах . Поэтому линейным углом между плоскостью боковой грани и плоскостью основания будет ∠НН₁М=60°.
3) Рассмотрим сечение , проходящее через МН и М₁Н₁ перпендикулярно сторонам основаниям. В сечении получилась равнобедренная трапеция ММ₁Н₁Н.
Проведем высоты М₁К и Н₁Р в трапеции . Тогда КР=М₁Н₁ =3√2 см , а МК=РН=( 5√2-3√2):2=√2 (см).
ΔРНН₁ -прямоугольный , tg60°=PН₁ /PH , √3=PН₁ /√2 , PН₁ =√6 см.
Поэтому высота усеченной пирамиды √6 см.