АВС - осевое сечение конуса. Тр-к АВС - равнобедренный. ВО - высота конуса - высота сечения, биссектриса и медина, проведенная из вершины В. Угол АВО равен углу ОВС = а. К - центр описанной около треугольника АВС окружности.КМ - высота и медиана равнобедренного тр-ка ВКС. ВМ= МС =ВК умнож на синус угла а, ВК = радиусу опис окружности. ВС = 2ВМ.Тогда высота конуса ОВ = ВС умножить на косинус угла а. ОВ = двум радиусам умноженным на синус угла а и на косинус угла а = радиус умножить на синус двойного угла а.
1) АВ - наклонная к плоскости α, АС ⊥α, ⇒ ВС - проекция наклонной на плоскость. ∠АВС - искомый. В ΔАВС катет ВС в 2 раза меньше гипотенузы, значит ∠ВАС = 30°, тогда ∠АВС = 60° 2) АВ и АС- наклонные к плоскости, АО ⊥ α, ⇒ ВО и СО - проекции наклонных. ∠АВО = ∠АСО = 60° (углы между наклонными и плоскостью) ΔАВО = ΔАСО по общему катету АО и противолежащему острому углу, значит ВО = СО и АВ = АС. ∠ВОС = 90°, пусть ВО = СО = х. По теореме Пифагора: х² + х² = (12√2)² 2х² = 288 х² = 144 х = 12 см. ΔАВО: ∠АОВ = 90°, cos∠B = BO/AB cos 60° = 12 / AB AB = 24 см
АВ - наклонная к плоскости α, АС ⊥α, ⇒ ВС - проекция наклонной на плоскость.
∠АВС - искомый.
В ΔАВС катет ВС в 2 раза меньше гипотенузы, значит ∠ВАС = 30°, тогда ∠АВС = 60°
2)
АВ и АС- наклонные к плоскости, АО ⊥ α, ⇒ ВО и СО - проекции наклонных. ∠АВО = ∠АСО = 60° (углы между наклонными и плоскостью)
ΔАВО = ΔАСО по общему катету АО и противолежащему острому углу, значит ВО = СО и АВ = АС.
∠ВОС = 90°, пусть ВО = СО = х. По теореме Пифагора:
х² + х² = (12√2)²
2х² = 288
х² = 144
х = 12 см.
ΔАВО: ∠АОВ = 90°, cos∠B = BO/AB
cos 60° = 12 / AB
AB = 24 см