Большие диагонали разбивают правильный шестиугольник на 6 равных равносторонних треугольников: их боковые стороны равны как радиусы описанной окружности, а угол при вершине 360°:6 = 60°.
Тогда большая диагональ в 2 раза больше стороны шестиугольника.
Тогда большая диагональ в 2 раза больше стороны шестиугольника.
Внутренние углы правильного шестиугольника равны
180°(6 - 2) / 6 = 180° · 4 / 6 = 120°
Пусть а - сторона шестиугольника.
Из ΔАВС по теореме косинусов составим уравнение:
АС² = а² + а² - 2·а·а·cos120°
(9√3)² = 2a² + 2 · a² · 1/2
243 = 2a² + a²
3a² = 243
a² = 81
a = 9
AD = 2a = 18 см
№1
Найдем гипотенузу AB
AB= 3√3 : √3/2=6
Найдем BC
По теореме Пифагора:
36-27=9 BC=3
ответ: 3
№2
треугольники CHB и CHA
Из треугольника CHB найдем СH.
Так как тругольник ABC ранвостороний, то точка H делит AB на две равные отрезки (AH=HB) HB= 2√2/2= √2
По теореме Пифагора:
CH^2 + (√2)^2=(2√2)^2
CH=√6
ответ: √6
№3
ABCD-ромб, точка О- точка пересечения диагоналей.
Так как угол АВС=60 градусов, то угол ОВС=30 градусов
Из треугольника BOC
ВО=19* cos30 градусов=19 * √3/2= 9,5√3
По теореме Пифагора найдем OC
OC^2=361-270,75=90,25 OC=9,5
AС-меньшая диагональ ромба
AC=2OC
AC=2*9,5=19
ответ: 19