Сечение FA1C1D- прямоугольник, т.к. грани , содержащие стороны А1F и C1D параллельны между собой и перпендикулярны основанию. Площадь сечения - площадь прямоугольника со сторонами А1F (длина) и DF (ширина) Ширина DF равна удвоенной длине высоты FН равностороннего треугольника в основании призмы со стороной 6. FH=FE*sin (60°) DF=2*FН=2*(6√3):2=6√3 cм А1F=10 ( треугольник АА1Ф - египетский, можно проверить по т. Пифагора) S A1C1DF= 10*6√3=60√3 см² Угол между сечением и плоскостью основания - это угол А1FA на грани А1F1FA Его синус равен A1A:A1F=8:10=0,8, а градусная величина приблизительно 53°
Плоскости α и β параллельны. Через точку M, находящуюся между этими плоскостями, проведены две прямые. Одна из них пересекает плоскости α и β в точках A₁ и B₁, а другая — в точках A₂ и B₂ соответственно . Найдите отрезок A₁A₂, если он на 1 см меньше отрезка B₁B₂, MA₂ = 4 см, A₂B₂ = 10 см.
Объяснение:
1) Две пересекающиеся прямые А₁В₁ и А₂В₂ определяют плоскость
(А₁А₂ В₂) единственным образом ( аксиома). Эта плоскость пересекает параллельные плоскости α и β по параллельным прямым А₁А₂ и В₁В₂( свойство).
2) ΔМА₁А₂~ΔMB₁B₂ по 2-м углам : ∠А₁МА₂=∠B₁МB₂ как вертикальные , ∠А₁А₂М =∠В₁В₂М как накрест лежащие при А₁А₂ || В₁В₂, А₂В₂-секущая. Поэтому сходственные стороны пропорциональны
Площадь сечения - площадь прямоугольника со сторонами А1F (длина) и DF (ширина)
Ширина DF равна удвоенной длине высоты FН равностороннего треугольника в основании призмы со стороной 6.
FH=FE*sin (60°)
DF=2*FН=2*(6√3):2=6√3 cм
А1F=10 ( треугольник АА1Ф - египетский, можно проверить по т. Пифагора)
S A1C1DF= 10*6√3=60√3 см²
Угол между сечением и плоскостью основания - это угол А1FA на грани А1F1FA
Его синус равен A1A:A1F=8:10=0,8, а градусная величина
приблизительно 53°
Плоскости α и β параллельны. Через точку M, находящуюся между этими плоскостями, проведены две прямые. Одна из них пересекает плоскости α и β в точках A₁ и B₁, а другая — в точках A₂ и B₂ соответственно . Найдите отрезок A₁A₂, если он на 1 см меньше отрезка B₁B₂, MA₂ = 4 см, A₂B₂ = 10 см.
Объяснение:
1) Две пересекающиеся прямые А₁В₁ и А₂В₂ определяют плоскость
(А₁А₂ В₂) единственным образом ( аксиома). Эта плоскость пересекает параллельные плоскости α и β по параллельным прямым А₁А₂ и В₁В₂( свойство).
2) ΔМА₁А₂~ΔMB₁B₂ по 2-м углам : ∠А₁МА₂=∠B₁МB₂ как вертикальные , ∠А₁А₂М =∠В₁В₂М как накрест лежащие при А₁А₂ || В₁В₂, А₂В₂-секущая. Поэтому сходственные стороны пропорциональны
А₁А₂ : В₁В₂ = АМА₂ : МВ₂
А₁А₂ : (А₁А₂+1) = 4: ( 10-4)
4(А₁А₂+1)=А₁А₂*6 ⇒ А₁А₂= 2 cм