№1 КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам. №2 Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град. ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2 2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам.
№2
Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН
КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град.
ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2
2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
Можно решать так: имеется трапеция, большее основание которой 25 см, меньшее основание 4 см, боковые стороны 13 см и 20 см. (верхний чертеж)
Проведем две высоты, которые отсекут от нижнего основания 4 см.
Начертим треугольник (чертеж внизу), где основание 25-4=21 см, стороны 13 см и 20 см и высота h. Найдем его площадь по формуле Герона
S=√(р(р-а)(р-в)(р-с)=√(27*6*14*7)=√15786=126 (см²)
Найдем h, которая и будет высотой данной трапеции
126=1\2 * 21 * h
10,5h=126; h=12 см.
ответ: 12 см.
Можно решать другим , но будет длиннее.