Внешний угол треугольника при данной вершине — это угол, смежный с внутренним углом треугольника при этой вершине.при каждой вершине треугольника есть два внешних угла. чтобы построить внешний угол при вершине треугольника, можно продлить любую из двух сторон, на которых лежит данная вершина. таким образом получаем 6 внешних углов. внешние углы каждой пары при данной вершины равны между собой (как вертикальные): дано: ∆авс, ∠1 — внешний угол при вершине с.
доказать: ∠1=∠а+∠в. так как сумма углов треугольника равна 180º, ∠а+∠в+∠с=180º.следовательно, ∠с=180º-(∠а+∠в). ∠1 и ∠с (∠асв) — смежные, поэтому их сумма равна 180º, значит, ∠1=180º-∠с=180º-(180º-(∠а+∠в))=180º-180º+(∠а+∠в)=∠а+∠в.
Т.к. треугольник АВС равнобедренный, то высота, проведенная из его вершины к основанию, является ещё его биссектрисой и медианой ( свойство равнобедренного треугольника).
Тогда медианы ВН и АМ пересекающиеся в точке О, делятся этой точкой в отношении 2:1, считая от вершин (свойство медиан).
Медиана АМ делится на АО=30 (2/3 от 45), и ОМ=15( 1/3 от 45).
В прямоугольном треугольнике АОН катет ОН противолежит углу 30° и равен половине гипотенузы АО.
доказать: ∠1=∠а+∠в. так как сумма углов треугольника равна 180º, ∠а+∠в+∠с=180º.следовательно, ∠с=180º-(∠а+∠в). ∠1 и ∠с (∠асв) — смежные, поэтому их сумма равна 180º, значит, ∠1=180º-∠с=180º-(180º-(∠а+∠в))=180º-180º+(∠а+∠в)=∠а+∠в.
Т.к. треугольник АВС равнобедренный, то высота, проведенная из его вершины к основанию, является ещё его биссектрисой и медианой ( свойство равнобедренного треугольника).
Тогда медианы ВН и АМ пересекающиеся в точке О, делятся этой точкой в отношении 2:1, считая от вершин (свойство медиан).
Медиана АМ делится на АО=30 (2/3 от 45), и ОМ=15( 1/3 от 45).
В прямоугольном треугольнике АОН катет ОН противолежит углу 30° и равен половине гипотенузы АО.
ОН=30•sin30ª=15
ОН по свойству медианы равен одной третьей ВН.
Отсюда ВН=3•ОН=45.