В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Misha01923
Misha01923
03.07.2020 11:12 •  Геометрия

Найти скалярное произведение me * oe, если сторона ромба eonm равна 4, а угол e=120°

Показать ответ
Ответ:
ЯTV
ЯTV
08.03.2021 11:22

Відповідь:

70см

Пояснення:

№76.

Необхідне знання про те, що висота в рівнобедренному трикутнику , що проведена до основи є медианою. Тобто DO=OF і відповідно DF=2DO.

P(DEO)=DE+EO+DO;

DE+8+DO= 43

DE+DO=43-8;

DE+DO=35(см).

P(DEF)=DE+EF+DF=2DE+2DO=2(DE+DO)=35*2=70(см)

104. Міра другого кута 180°-50°=130°

109.

а) нехай  ∠1=4х, ∠2=5х

4х+5х=180°;

9х=180°;

х=180°:9=20°

∠1=4*20°=80°

∠2=5*20°=100°

Відповідь: 80° , 100°

б) нехай  ∠1=3х, ∠2=2х

3х+2х=180°;

5х=180°;

х=180°:5;

х=36°

∠1=3*36°=108°

∠2=2*36°=72°

Відповідь: 108° , 72°

113. Вертикальні кути- рівні. Суміжні в сумі дають 180°.

даний кут                10°    50°   60°   90°   120°    170°

вертикальний        10°    50°   60°   90°   120°    170°

суміжний                170°   130°  120°  90°   60°    10°    

0,0(0 оценок)
Ответ:
aspier2016
aspier2016
20.04.2020 15:19

Дано:

ABCS - правильная треугольная пирамида

SO - высота пирамиды        SO⊥(ABC)

Sбок = 96 см²

Sполн = 112 см²

-----------------------------

Найти:

AB - ?

SO - ?

1) Сначала запишем формулу площадь полной поверхности пирамиды, именно по такой формуле мы найдем площадь основания:

Sполн = Sбок + Sосн - Площадь полной поверхности пирамиды ⇒

Sосн = Sполн - Sбок = 112 см² - 96 см² = 16 см²

2) Поскольку треугольная пирамида правильная, то в основе лежит правильный треугольник. Следовательно, мы найдем сторону его основания:

S_{ocn} = \frac{\sqrt{3}}{4}a^{2} = \frac{\sqrt{3}}{4}AB^{2} - Площадь основания правильной пирамиды

AB = \sqrt{\frac{4*S_{ocn}}{\sqrt{3}}} - Сторона его основания

AB = √4×16 см²/√3 = √64 см²/√3 × √3/√3 = √64√3 см²/3 = \frac{8\sqrt{\sqrt{3}}cm}{\sqrt{3}}*\frac{\sqrt{3}}{\sqrt{3}}=\frac{8\sqrt[4]{3}\sqrt{3}cm} {3}=\frac{8\sqrt[4]{3}\sqrt[4]{3^{2}}cm}{3}=\frac{8\sqrt[4]{27}}{3}cm

3) Далее находим радиус вписанной окружности основания:

AB = MO×2√3 - нахождение стороны основания.

MO = AB/2√3 - радиус вписанной окружности основания

MO = \frac{\frac{8\sqrt[4]{27}}{3}cm}{2\sqrt{3}}*\frac{\sqrt{3}}{\sqrt{3}}=\frac{\frac{8\sqrt[4]{27}\sqrt[4]{3^{2}}}{3}cm}{2*3}=\frac{\frac{8\sqrt[4]{27*9}}{3}cm}{6} = \frac{\frac{8\sqrt[4]{243}}{3}cm}{6}=\frac{\frac{8\sqrt[4]{81*3}}{3}cm}{6}=\frac{\frac{8*3\sqrt[4]{3}}{3}cm}{6}=\frac{8\sqrt[4]{3}cm}{6}=\frac{4\sqrt[4]{3}}{3}cm

4) Далее находим площадь грани:

Sбок = 3Sграни ⇒ Sграни = Sбок/3 = 96 см²/3 = 32 см², тогда высота грани:

SM = 2Sграни/AB - Высота с площадью грани

SM = \frac{2*32cm^{2}}{\frac{8\sqrt[4]{27}}{3}cm}=\frac{24}{\sqrt[4]{27}}cm*\frac{\sqrt[4]{3}}{\sqrt[4]{3}}=\frac{24\sqrt[4]{3}}{\sqrt[4]{81}}cm=\frac{24\sqrt[4]{3}}{3}cm = 8\sqrt[4]{3}cm

5) И теперь находим высоту SO по теореме Пифагора:

SO = √SM² - MO² - нахождение высоты SO

SO = \sqrt{(8\sqrt[4]{3}cm)^{2}-(\frac{4\sqrt[4]{3}}{3}cm)^{2}} = \sqrt{64\sqrt{3}cm^{2}-\frac{16\sqrt{3}}{3}cm^{2}}=\sqrt{\frac{560\sqrt{3}}{9}cm^{2}}=\frac{\sqrt{560\sqrt{3}}}{3}cm = \frac{\sqrt{16*35\sqrt{3}}}{3}cm=\frac{4\sqrt{35\sqrt{3}}}{3}cm=\frac{4\sqrt{\sqrt{35^{2}}*\sqrt{3}}}{3}cm = \frac{4\sqrt{\sqrt{1225*3}}}{3}cm = \frac{4\sqrt{\sqrt{3675}}}{3}cm = \frac{4\sqrt[4]{3675}}{3}cm

ответ: AB = \frac{8\sqrt[4]{27}}{3}cm  SO = \frac{4\sqrt[4]{3675}}{3}cm

P.S.

Рисунок показан внизу:↓


Площадь боковой поверхности правильной треугольной пирамиды равна 96 см2, а площадь полной поверхнос
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота