1) Длина стороны DA может быть представлена как сумма двух отрезков: DA = DB₁ + В₁А, где точка B₁ - основание перпендикуляра, опущенного из точки В на DA.
2) Тогда, согласно теореме Пифагора:
В₁А =√ВА²-ВВ₁²,
а т.к. ВВ₁ = СD,
то В₁А = √(25² - 15²) = √(625 -225) = √400 = 20.
3) Выразим периметр через длины образующих его отрезков:
P = CD+CB+BA+AB₁+B₁D
или
P = CD+CB+BA+AB₁+CB,
т.к. B₁D = CB.
P = 15 + 2*СВ + 25 + 20 = 80,
откуда
2*СВ = 80-60 = 20,
СВ = DB₁ = 10,
DA = DB₁ + B₁А = 10+20= 30.
4) Площадь (произведение полусуммы оснований на высоту):
Площадь трапеции 300.
Решение на фото
300
Объяснение:
1) Длина стороны DA может быть представлена как сумма двух отрезков: DA = DB₁ + В₁А, где точка B₁ - основание перпендикуляра, опущенного из точки В на DA.
2) Тогда, согласно теореме Пифагора:
В₁А =√ВА²-ВВ₁²,
а т.к. ВВ₁ = СD,
то В₁А = √(25² - 15²) = √(625 -225) = √400 = 20.
3) Выразим периметр через длины образующих его отрезков:
P = CD+CB+BA+AB₁+B₁D
или
P = CD+CB+BA+AB₁+CB,
т.к. B₁D = CB.
P = 15 + 2*СВ + 25 + 20 = 80,
откуда
2*СВ = 80-60 = 20,
СВ = DB₁ = 10,
DA = DB₁ + B₁А = 10+20= 30.
4) Площадь (произведение полусуммы оснований на высоту):
15*(СВ+DA):2 = 15*(10+30):2=15*20 = 300.