Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
1) если в четырехугольник можно вписать окружность, то сумма его противолежащих углов = 180 град. ∠Р и ∠Н являются противолежащими. получим, что ∠Н= 180- ∠Р= 180-120=60град.
2) проведем высоту КА. рассмотрим ΔКАН:
а) треуг прямоуг, тк ∠А= 90 град( высота)
б) по тригонометрическим формулам в прямоуг. треуг. катет= гипотенуза* cos прилежащего угла. АН= 6*cos 60= 6*1\2=3см
б) по теореме катет, лежащий против угла в 30 град, равен половине гипотенузы. получим, что МК= 3√3*2=6√3см
4) залезем в ΔМКН .мы можем сказать, что этот треуг вписан в окружность. если мы применим теорему синусов в этом треуг, по найдем радиус. итак, теорема синусов: 2R=а\sinА, где а- сторона треуг, а ∠а- противолежащий угол для этой стороны. 2R=МК\sin 60=6√3: √3\2=6√3*2\√3=12. 2R=12. тогда R= 12\2=6см
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
1) если в четырехугольник можно вписать окружность, то сумма его противолежащих углов = 180 град. ∠Р и ∠Н являются противолежащими. получим, что ∠Н= 180- ∠Р= 180-120=60град.
2) проведем высоту КА. рассмотрим ΔКАН:
а) треуг прямоуг, тк ∠А= 90 град( высота)
б) по тригонометрическим формулам в прямоуг. треуг. катет= гипотенуза* cos прилежащего угла. АН= 6*cos 60= 6*1\2=3см
в) по тригонометрическим формулам КА= 6*sin противолежащего угла= 6*sin 60=6*√3\2= 3√3см
3) рассмотрим ΔМКА
а) треуг прямоуг (высота)
б) по теореме катет, лежащий против угла в 30 град, равен половине гипотенузы. получим, что МК= 3√3*2=6√3см
4) залезем в ΔМКН .мы можем сказать, что этот треуг вписан в окружность. если мы применим теорему синусов в этом треуг, по найдем радиус. итак, теорема синусов: 2R=а\sinА, где а- сторона треуг, а ∠а- противолежащий угол для этой стороны. 2R=МК\sin 60=6√3: √3\2=6√3*2\√3=12. 2R=12. тогда R= 12\2=6см
ответ:6