АО = СО = 9 см ВО = ДО = 5 см АМ = СМ = √(9²+12²) =√(81+144) = √225 = 15 см МС = МД = √(5²+12²) =√(25+144) = √169 = 13 см Расстояния между основаниями? Это как? Стороны и диагонали ромба? AB = BC = СД = АД = √(9²+5²) =√(81+25) = √106 см АС и ВД даны по условию. --- 2 варианта, к сожалению! 1) АС - гипотенуза AO = AC/2 = 7,5 см О - центр описанной окружности треугольника АВС и поэтому АК = ВК = СК = √(7,5² + 8,5²) = √(15² + 17²)/2 = √(225+289)/2 = √514/2 см 2) AB - гипотенуза АВ = √(8² + 15²) = √(64+225) = √289 = 17 см AO = AВ/2 = 8,5 см АК = ВК = СК = √(8,5² + 8,5²) = 8,5√2 см
Периметр ромба равен 8 м.
Объяснение:
В ромбе диагонали взаимно перпендикулярны и являются биссектрисами углов. Следовательно ∠KEL = ∠EKL.
∠EOA = ∠EKL (дано). =>
∠KEL = ∠EAO => треугольник EOA равнобедренный.
Кроме того, АВ║LK║EF (так ∠EOA = ∠EKL соответствкнные углы при АВ и LK и секущей ЕК).
Значит ЕА = АО =1м.
АО = ОВ (так как точка О - точка пересечения диагоналей ромба).
AEFB - параллелограмм (так как АВ║EF и EA║FB). =>
EF =AB = 2·AO = 2 м.
Итак, сторона ромба равна 2м, тогда его периметр равен 8м (стороны ромба равны).
ВО = ДО = 5 см
АМ = СМ = √(9²+12²) =√(81+144) = √225 = 15 см
МС = МД = √(5²+12²) =√(25+144) = √169 = 13 см
Расстояния между основаниями? Это как? Стороны и диагонали ромба?
AB = BC = СД = АД = √(9²+5²) =√(81+25) = √106 см
АС и ВД даны по условию.
---
2 варианта, к сожалению!
1) АС - гипотенуза
AO = AC/2 = 7,5 см
О - центр описанной окружности треугольника АВС и поэтому
АК = ВК = СК = √(7,5² + 8,5²) = √(15² + 17²)/2 = √(225+289)/2 = √514/2 см
2) AB - гипотенуза
АВ = √(8² + 15²) = √(64+225) = √289 = 17 см
AO = AВ/2 = 8,5 см
АК = ВК = СК = √(8,5² + 8,5²) = 8,5√2 см