а) Проекция точки S на плоскость основания это точка O — центр основания. Центр правильного треугольника является точкой пересечения его медиан, поэтому . Прямая проецируется на плоскость основания и прямую Поэтому проекция точки — точка — лежит на отрезке M — середина AS, поэтому ее проекция — это середина отрезка AO. Таким образом, проекции точек S и M на плоскость основания делят высоту AN треугольника ABC на три равные части.
б) Прямая проектируется на плоскость основания в прямую Поэтому проекция точки — точка — лежит на отрезке Значит, прямая является проекцией прямой следовательно, угол — искомый. Заметим, что где — центр основания, значит, — средняя линия треугольника а поэтому — середина
Чтобы узнать принадлежит точка окружности или нет, нужно подставить координаты точки в уравнение. А(3;4) 3^2+4^2 - 25 =0? 9+16-25=0 верно, значит точка А принадлежит окружности В(10;3) 10^2 + 3^2-25=0 100+9 -25=0 неверно, значит В не принадлежит окружности С(-1;3) (-1)^2+3^2-25=0, 1+9-25=0 неверно, С не принадлежит окружности Д(0;5) 0^2+5^2-25=0, 0+25-25=0 верно Д принадлежит окружности 2) подставим координаты центра и значение радиуса в уравнение окружности (х - 2)^2 +(y - (-3))^2=2^2, (x - 2)^2 + (y + 3)^2 = 4 - уравнение окружности. А(2; -3) (2 - 2)^2 + (-3 + 3)^2 = 4, 0+0=4 неверно, значит А не принадлежит этой окружности
а) Проекция точки S на плоскость основания это точка O — центр основания. Центр правильного треугольника является точкой пересечения его медиан, поэтому . Прямая проецируется на плоскость основания и прямую Поэтому проекция точки — точка — лежит на отрезке M — середина AS, поэтому ее проекция — это середина отрезка AO. Таким образом, проекции точек S и M на плоскость основания делят высоту AN треугольника ABC на три равные части.
б) Прямая проектируется на плоскость основания в прямую Поэтому проекция точки — точка — лежит на отрезке Значит, прямая является проекцией прямой следовательно, угол — искомый. Заметим, что где — центр основания, значит, — средняя линия треугольника а поэтому — середина
Тогда
и
Из прямоугольного треугольника находим:
Из прямоугольного треугольника находим:
Значит, искомый угол равен
ответ:arctg 10/21
А(3;4) 3^2+4^2 - 25 =0? 9+16-25=0 верно, значит точка А принадлежит окружности
В(10;3) 10^2 + 3^2-25=0 100+9 -25=0 неверно, значит В не принадлежит окружности
С(-1;3) (-1)^2+3^2-25=0, 1+9-25=0 неверно, С не принадлежит окружности
Д(0;5) 0^2+5^2-25=0, 0+25-25=0 верно Д принадлежит окружности
2) подставим координаты центра и значение радиуса в уравнение окружности
(х - 2)^2 +(y - (-3))^2=2^2, (x - 2)^2 + (y + 3)^2 = 4 - уравнение окружности.
А(2; -3) (2 - 2)^2 + (-3 + 3)^2 = 4, 0+0=4 неверно, значит А не принадлежит этой окружности