Высота призмы (ее боковое ребро) равно а, тк лежит против угла в 30 гр в прямоугольном треугольнике. Сторонаа ромба равна sqrt(4*a^2 - a^2)=a*sqrt(3) Если из вершины тупого угла ромба опустить на основание ромба перпенд то он отечет на стороне ромба отрезок (a*sqrt(3))/2 тк также лежит в прямоуг треуг против угла в 30 гр Тогда высота ромба будет sqrt(3*a^2 - (3*a^2)/4) = 3*a/2 Площадь ромба - произв. основания на высоту будет (3*sqrt(3)*a^2)/2 Объем призмы ( (3*sqrt(3)*a^2)/2) * а = 3*sqrt(3)*a^3)/2 sqrt - квадратный корень, ^ - возведение в квадрат.
Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
Сторонаа ромба равна sqrt(4*a^2 - a^2)=a*sqrt(3)
Если из вершины тупого угла ромба опустить на основание ромба перпенд то он отечет на стороне ромба отрезок (a*sqrt(3))/2 тк также лежит в прямоуг треуг против угла в 30 гр
Тогда высота ромба будет sqrt(3*a^2 - (3*a^2)/4) = 3*a/2
Площадь ромба - произв. основания на высоту будет (3*sqrt(3)*a^2)/2
Объем призмы ( (3*sqrt(3)*a^2)/2) * а = 3*sqrt(3)*a^3)/2
sqrt - квадратный корень, ^ - возведение в квадрат.
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см