Проведем произвольную прямую а. Отметим на ней точку В.
1) Из вершины В данного угла раствором циркуля, равным длине ВК, делаем насечки М и Е на сторонах угла.
2) Соеденим точки М и Е.
3) Отложим на прямой а от В отрезок BК, равный ВМ=биссектрисе ВК.
4) Из точки К проведем полуокружность радиусом, равным отрезку МЕ
5) От В раствором циркуля, равным ВЕ, проведем полуокружность до пересечения с полуокружностью из К
6) Через точку пересечения полуокружностей проведем луч ВЕ'. Данный по условию угол построен.
7) Точно так же построим угол, равный построенному, в другой полуплоскости от прямой а. Получившийся угол равен двум углам ВКС ( в котором ВК - биссектриса)
8) Из К, как из центра, проведем полуокружность радиусом. равным отрезку СК. Точку пересечения с лучом ВЕ' обозначим С.
9) От С через К проведем прямую до пересечения со второй стороной построенного угла ( которая по другую сторону от а).Точку пересечения обозначим А.
10) Треугольник АВС построен. В нем ВК - биссектриса заданной длины, угол СВА=2 угла СВК, КС равен заданному отрезку СК.
Если в данном прямоугольном треугольнике есть угол, равный 60-ти градусам, то в нём будет угол, равный 30-ти градусам(180-90-60=30). Как нам известно, в треугольниках напротив большего угла лежит бОльшая сторона этого самого треугольника, т.е. напротив угла в 30 градусов лежит меньший катет этого прямоугольного треугольника. А как нам всем известно, в прямоугольном треугольника сторона, лежащая напротив угла в 30 градусов, равна половине его гипотенузы. Т.е. разница между гипотенузой и меньшим катетом треугольника является просто разницей между гипотенузой и её половины. Значит сама гипотенуза равна 6-ти см(3*2=6), а меньший катет равен 3-ём см. ответ: гипотенуза=6 см, меньший катет=3 см.
Построение:
Проведем произвольную прямую а. Отметим на ней точку В.
1) Из вершины В данного угла раствором циркуля, равным длине ВК, делаем насечки М и Е на сторонах угла.
2) Соеденим точки М и Е.
3) Отложим на прямой а от В отрезок BК, равный ВМ=биссектрисе ВК.
4) Из точки К проведем полуокружность радиусом, равным отрезку МЕ
5) От В раствором циркуля, равным ВЕ, проведем полуокружность до пересечения с полуокружностью из К
6) Через точку пересечения полуокружностей проведем луч ВЕ'. Данный по условию угол построен.
7) Точно так же построим угол, равный построенному, в другой полуплоскости от прямой а. Получившийся угол равен двум углам ВКС ( в котором ВК - биссектриса)
8) Из К, как из центра, проведем полуокружность радиусом. равным отрезку СК. Точку пересечения с лучом ВЕ' обозначим С.
9) От С через К проведем прямую до пересечения со второй стороной построенного угла ( которая по другую сторону от а).Точку пересечения обозначим А.
10) Треугольник АВС построен. В нем ВК - биссектриса заданной длины, угол СВА=2 угла СВК, КС равен заданному отрезку СК.
А как нам всем известно, в прямоугольном треугольника сторона, лежащая напротив угла в 30 градусов, равна половине его гипотенузы. Т.е. разница между гипотенузой и меньшим катетом треугольника является просто разницей между гипотенузой и её половины. Значит сама гипотенуза равна 6-ти см(3*2=6), а меньший катет равен 3-ём см.
ответ: гипотенуза=6 см, меньший катет=3 см.