Боковые стороны прямоугольной трапеции равны 15 см и 17 см, средняя линия равна 6 см. Найдите основания трапеции
Прямоугольной трапецией называется трапеция, в которой хотя бы один угол прямой угол А=90*, следовательно АД - высота сделаем дополнительное построение треугольники СС1О и ВВ1О равны по двум сторонам и углу между ними, следовательно СС1=ВВ1 С1О=В1О = 15/2=7,5 СО=ВО=17/2=8,5 по теореме Пифагора СС1= корень из (СО"-С1О") = корень из (72,25-56,25) = 4 средняя линия равна (а+в) /2 а=6-4=2 в=6+4=10 ответ: основания трапеции равны 2 и 10
Пусть этот треугольник будет АВС. угол АВС=147°, угол ВАС=27°. Высоты АК и МВ продолжаются и пересекаются в точке О. Угол КВА - смежный углу 147° и равен 180°-147°=33° В прямоугольном треугольнике АКВ угол КАВ=90-33=57 В прямоугольном треугольнике ОАМ угол ОАМ=КАВ+ВАМ угол ОАМ=27°+57°=84° В этом же треугольнике угол МОА равен 90°-84°=6° Тупой угол при точке пересечения высот, как смежный с ним, равен 180°-6°=174° ----------------- Пока писала решение, нашла еще одно, покороче. Угол ВСА равен разности между суммой всех углов треугольника и суммой двух известных: Угол ВСА=180°-(27°+147°)=6° В прямоугольном треугольнике АКС угол КАС=90°-6°=84° Тогда угол АОМ прямоугольного треугольника АОМ равен 90°-84°=6°, а тупой угол, смежный с ним, равен 180°-6°=174°
Прямоугольной трапецией называется трапеция, в которой хотя бы один угол прямой
угол А=90*, следовательно АД - высота
сделаем дополнительное построение
треугольники СС1О и ВВ1О равны по двум сторонам и углу между ними, следовательно СС1=ВВ1
С1О=В1О = 15/2=7,5
СО=ВО=17/2=8,5
по теореме Пифагора СС1= корень из (СО"-С1О") = корень из (72,25-56,25) = 4
средняя линия равна (а+в) /2
а=6-4=2
в=6+4=10
ответ: основания трапеции равны 2 и 10
угол АВС=147°, угол ВАС=27°.
Высоты АК и МВ продолжаются и пересекаются в точке О.
Угол КВА - смежный углу 147° и равен
180°-147°=33°
В прямоугольном треугольнике АКВ угол КАВ=90-33=57
В прямоугольном треугольнике ОАМ угол ОАМ=КАВ+ВАМ
угол ОАМ=27°+57°=84°
В этом же треугольнике угол МОА равен 90°-84°=6°
Тупой угол при точке пересечения высот, как смежный с ним, равен
180°-6°=174°
-----------------
Пока писала решение, нашла еще одно, покороче.
Угол ВСА равен разности между суммой всех углов треугольника и суммой двух известных:
Угол ВСА=180°-(27°+147°)=6°
В прямоугольном треугольнике АКС угол КАС=90°-6°=84°
Тогда угол АОМ прямоугольного треугольника АОМ равен 90°-84°=6°,
а тупой угол, смежный с ним, равен
180°-6°=174°