1) Проведём произвольно наклонную(ребро двугранного угла).По левую сторону от неё обозначим точку А и опустим из неё перпендикуляр на ребро в точку С1 . По правую сторону от линии ребра отмети м точку А1. Соединим её с точками А и С1. Получим прямоугольный треугольник АС1А1.(на чертеже углы выглядят произвольно). В данном треугольнике АС1=51 расстояние до ребра первой точки. АА1 расстояние от точки до другой грани. Угол АА1С прямой . Аналогично строим второй треугольник ВВ1С2. Эти треугольники подобны поскольку они прямоугольные (АА1 и ВВ1 перпендикулярны к грани) и уних общий линейный угол двугранного угла. Отсюда АА1/АС1=х/34. Где x расстояние до грани от другой точки. x=15*34/51=10.
2)10 сантиметров.
Объяснение:
из KN||AC и AK=KB мы узнаем, что KN является средней линией треугольника ABC.
т.к. KN - средняя линия, ее длина равняется половине АС, то есть 6 сантиметрам.
т.к. отрезок МК перпендикулярен плоскости треугольника АВС треугольник MKN является прямоугольным.
1) Проведём произвольно наклонную(ребро двугранного угла).По левую сторону от неё обозначим точку А и опустим из неё перпендикуляр на ребро в точку С1 . По правую сторону от линии ребра отмети м точку А1. Соединим её с точками А и С1. Получим прямоугольный треугольник АС1А1.(на чертеже углы выглядят произвольно). В данном треугольнике АС1=51 расстояние до ребра первой точки. АА1 расстояние от точки до другой грани. Угол АА1С прямой . Аналогично строим второй треугольник ВВ1С2. Эти треугольники подобны поскольку они прямоугольные (АА1 и ВВ1 перпендикулярны к грани) и уних общий линейный угол двугранного угла. Отсюда АА1/АС1=х/34. Где x расстояние до грани от другой точки. x=15*34/51=10.
2)10 сантиметров.
Объяснение:
из KN||AC и AK=KB мы узнаем, что KN является средней линией треугольника ABC.
т.к. KN - средняя линия, ее длина равняется половине АС, то есть 6 сантиметрам.
т.к. отрезок МК перпендикулярен плоскости треугольника АВС треугольник MKN является прямоугольным.
По теореме Пифагора MN^2=MK^2+KN^2
MN^2=6^2+8^2
MN^2=36+64
MN=10 см
1. Треугольник.
Пусть ∠2 = ∠3 = х, тогда ∠1 = х + 75°
Сумма углов треугольника 180°:
x + x + x + 75° = 180°
3x = 105°
x = 35°
∠2 = ∠3 = 35°, ∠1 = 110°
2. Две пересекающиеся прямые.
∠1 + ∠2 = 180°, как смежные углы
∠1 - ∠2 = 75°, откуда ∠1 = (180° + 75°)/2 = 255°/2 = 127,5°
∠2 = ∠3 = 127,5° - 75° = 52,5°
3. Две параллельные прямые пересечены секущей.
∠1 + ∠2 = 180°, как внутренние односторонние углы
∠1 - ∠2 = 75°, откуда ∠1 = (180° + 75°)/2 = 255°/2 = 127,5°
∠2 = ∠3 = 127,5° - 75° = 52,5°