Если одна сторона 10, а площадь 64, то высота 6.4см
Если провести эту высоту то образуется прямоугольный треугольник. Косинус его угла 0.6. Косинус это отношение прилежащего катета к гипотенузе. Но нам известен только противолежащий катет. По основному тригонометрическому тождеству найдем синус. Пусть этот угол a.
cos²a + sin²a = 1
0.36 + sin²a = 1
sin²a = 0.64
sina = 0.8 (-0.8 опускаем, т.к в данном случае синус не может быть отрицательным)
Тогда гипотенуза равна 8см. Это и есть вторая сторона.
ответ: №42.5 sin∠А= 0,8572; cos∠А=0,5077; tg∠А=1,6643.
sin∠C=0,7960; cos∠С=0,6018; tg∠C=1,3270.
sin∠В=0,9272; cos∠В=0,3746; tg∠В=2,4750.
№42.6 выполнить аналогично №42.5
Объяснение: Пусть в Δ АВС АВ=13, ВС=14, АС=15.
Из теоремы косинусов:
cos∠А=(13²+15²-14²) : (2*13*15)=(169+225-196):390=0,5077 ⇒
⇒ ∠А≈59°; sin∠А= 0,8572; tg∠А=1,6643.
По теореме синусов АВ : sin∠C=ВC : sin∠А ⇒
⇒ sin∠C=АВ*sin∠А:ВС=13*0,8572:14=0,7960 ⇒
⇒ ∠С≈53°, cos∠С=0,6018; tg∠C=1,3270.
Из теоремы о сумме углов треугольника:
∠В= 180° - (∠А+∠С)=180° - (59°+53°)=180° - 112°= 68° ;
sin∠В=0,9272; cos∠В=0,3746; tg∠В=2,4750.
10 и 8 стороны
Объяснение:
Если одна сторона 10, а площадь 64, то высота 6.4см
Если провести эту высоту то образуется прямоугольный треугольник. Косинус его угла 0.6. Косинус это отношение прилежащего катета к гипотенузе. Но нам известен только противолежащий катет. По основному тригонометрическому тождеству найдем синус. Пусть этот угол a.
cos²a + sin²a = 1
0.36 + sin²a = 1
sin²a = 0.64
sina = 0.8 (-0.8 опускаем, т.к в данном случае синус не может быть отрицательным)
Тогда гипотенуза равна 8см. Это и есть вторая сторона.