9. треугольник sop = треугольнику rop по стороне и прилежащим к ней углам.
т.к. сторона ор общая, угол rpo=spo, rop=sop.
10.—
11. kmp=kpn
по двум сторонам и углу между ними.
т.к кр общая сторона. км=kp по условию,кмр=ркn.
12.авс=адс по трём сторонам.
т.к.ас общая сторона
ав=сд,ад=св.
13.асд=сдв по стороне и двум прилежащим к ней углам.
т.к. сд общая сторона
асд=дсв
адс=сдв.
14.rpq=rqs по стороне и двум прилежащим к ней углам.т.к.prq=sqrpqr=qrs rqобщая сторона.15.авд=дсв по сторонам и двум углам.т.к. адв=сдвавд=свддв общая сторона.16. ктм=stp по двум сторонам и углу между ними.ktm=stp т.к. вертикальные углыkt=tpmt=ts
26. в четырёхугольнике abcd диагонали пересекаются в точке о под углом α. точка f принадлежит отрезку ас. известно, что во = 19, do = 16, ас = 24. найдите af, если площадь треугольника fcd в три раза меньше площади четырёхугольника abcd.
решение.
площадь четырехугольника abcd можно найти по формуле:
по условию
(1)
площадь треугольника fdc также можно вычислить по формуле:
пусть fc=x, тогда af=24-x. рассмотрим треугольник dho, в котором do=16, , следовательно,. подставляем fc и dh в формулу площади треугольника fdc, имеем:
9. треугольник sop = треугольнику rop по стороне и прилежащим к ней углам.
т.к. сторона ор общая, угол rpo=spo, rop=sop.
10.—
11. kmp=kpn
по двум сторонам и углу между ними.
т.к кр общая сторона. км=kp по условию,кмр=ркn.
12.авс=адс по трём сторонам.
т.к.ас общая сторона
ав=сд,ад=св.
13.асд=сдв по стороне и двум прилежащим к ней углам.
т.к. сд общая сторона
асд=дсв
адс=сдв.
14.rpq=rqs по стороне и двум прилежащим к ней углам.т.к.prq=sqrpqr=qrs rqобщая сторона.15.авд=дсв по сторонам и двум углам.т.к. адв=сдвавд=свддв общая сторона.16. ктм=stp по двум сторонам и углу между ними.ktm=stp т.к. вертикальные углыkt=tpmt=ts
ответ:
объяснение:
26. в четырёхугольнике abcd диагонали пересекаются в точке о под углом α. точка f принадлежит отрезку ас. известно, что во = 19, do = 16, ас = 24. найдите af, если площадь треугольника fcd в три раза меньше площади четырёхугольника abcd.
решение.
площадь четырехугольника abcd можно найти по формуле:
по условию
(1)
площадь треугольника fdc также можно вычислить по формуле:
пусть fc=x, тогда af=24-x. рассмотрим треугольник dho, в котором do=16, , следовательно,. подставляем fc и dh в формулу площади треугольника fdc, имеем:
(2)
приравнивая (1) и (2), получаем уравнение:
следовательно, af=24-17,5 = 6,5
ответ: 6,5