Найдите высоту BF параллелограмма ABCD, если высота BH равна 7, сторона, на которую опущена высота BH, равна 12, а сторона, на которую опущена сторона BF, равна 21.
В конус вписана пирамида. основанием пирамиды служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол равен 30°. Боковая грань пирамиды,проходящая через данный катет,составляет с плоскостью основания угол 45°. Найдите объем конуса.
V=S•H:3
Для ответа на вопрос задачи нужно найти радиус основания конуса и его высоту ( она равна высоте вписанной пирамиды).
Основание пирамиды - прямоугольный треугольник. Следовательно, радиус основания конуса, как описанной окружности, равен половине гипотенузы вписанного треугольника.
Пусть это ∆ АВС, ∠С=90º, ∠А=30º; АС=2а
Гипотенуза АВ=АС:cos 30º=4a/√3
Тогда R=АО=ВО=ОС=2a/√3
Катет ВС=2a/√3 как противолежащий углу 30º
Угол между боковой гранью и плоскостью основания равен углу между перпендикулярами, проведенными к О и М из точки К катета АС (МК - наклонная, ОК - ее проекция, МК и ОК перпендикулярны АС по т. о трех перпендикулярах). К - середина основания АС равнобедренного ∆ АОС
Т.к. угол ОКА=90º, ОК|| ВС и является средней линией ∆ АВС и равна половине ВС.
ОК=ВС:2=а/√3
Высота пирамиды МО перпендикулярна плоскости основания, угол МКО=45º по условию, и ∆ МОК - равнобедренный. МО=ОК=а/√3
Сумма углов треугольника 180°. => В ∆ АВС угол С=180°-(80°+60°)=40° Найдем отношение длин сторон данных треугольников. АВ:МК==4:8 =1/2 АС:MN=6:12=1/2 BC:KN=7:14=1/2 Стороны данных треугольников пропорциональны.
Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны. В подобных треугольниках против сходственных сторон лежат равные углы. Угол М лежит против KN, сходственной ВС. => угол М=углу А=80° Угол К лежит против МN, сходственной АС, ⇒Угол К=углу В=60° Угол N=углу С=40°
В конус вписана пирамида. основанием пирамиды служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол равен 30°. Боковая грань пирамиды,проходящая через данный катет,составляет с плоскостью основания угол 45°. Найдите объем конуса.
V=S•H:3
Для ответа на вопрос задачи нужно найти радиус основания конуса и его высоту ( она равна высоте вписанной пирамиды).
Основание пирамиды - прямоугольный треугольник. Следовательно, радиус основания конуса, как описанной окружности, равен половине гипотенузы вписанного треугольника.
Пусть это ∆ АВС, ∠С=90º, ∠А=30º; АС=2а
Гипотенуза АВ=АС:cos 30º=4a/√3
Тогда R=АО=ВО=ОС=2a/√3
Катет ВС=2a/√3 как противолежащий углу 30º
Угол между боковой гранью и плоскостью основания равен углу между перпендикулярами, проведенными к О и М из точки К катета АС (МК - наклонная, ОК - ее проекция, МК и ОК перпендикулярны АС по т. о трех перпендикулярах). К - середина основания АС равнобедренного ∆ АОС
Т.к. угол ОКА=90º, ОК|| ВС и является средней линией ∆ АВС и равна половине ВС.
ОК=ВС:2=а/√3
Высота пирамиды МО перпендикулярна плоскости основания, угол МКО=45º по условию, и ∆ МОК - равнобедренный. МО=ОК=а/√3
S осн. конуса=πR²=4π•a²/3
V=[(4π•а²/3)•a/√3]:3=4π•a³/√3 (ед. объема)
В ∆ АВС угол С=180°-(80°+60°)=40°
Найдем отношение длин сторон данных треугольников.
АВ:МК==4:8 =1/2
АС:MN=6:12=1/2
BC:KN=7:14=1/2
Стороны данных треугольников пропорциональны.
Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.
В подобных треугольниках против сходственных сторон лежат равные углы.
Угол М лежит против KN, сходственной ВС. =>
угол М=углу А=80°
Угол К лежит против МN, сходственной АС, ⇒Угол К=углу В=60°
Угол N=углу С=40°