Ну например плоскость треугольника будет альфа , а ромба бета. Если внимательно посмотреть на условие задачи то мы увидим что у них будет общая сторона AB. Чтобы доказать что сторона СD параллельна плоскости альфа (треугольника) нужно обратиться к признаку параллельности прямой и плоскости . Он звучит так: Если прямая , которая не лежит в плоскости , параллельна какой-нибудь прямой плоскости , то она параллельна и самой плоскости. Какая-нибудь прямая на плоскости альфа (например) будет прямая АВ , потому что СD 100% параллельна AB так как они вместе лежат в плоскости ромба. НО одновременно АВ находиться в плоскости треугольника , потому что 2 плоскости пересекаются по этой прямой. Значит СD параллельна АВ не просто как в плоскости ромба , а и как в плоскости треугольника. Значит у нас все сходится с признаком параллельности . Если СD (это какая-нибудь прямая вне плоскости) параллельна какой-нибудь прямой на данной плоскости (имеется ввиду плоскость треугольника ) , то СD параллельна САМОЙ ПЛОСКОСТИ . Доказано! P.S. Если внимательно все прочитать , то все поймешь :D
По теореме, если у пирамиды равные двугранные углы при основании, тогда в многоугольник основания можно вписать окружность. В постановке задачи - доказать, что точка О - точка пересечения диагоналей, центр вписанной окружности - следовательно в основе лежит четырехугольник.Так как в четырехугольник можно вписать окружность, то это может быть одна из следующих фигур: 1. Квадрат 2. Ромб 3. Четырехугольник, у которого сумма одних противоположных сторон равна сумме других противоположных сторон.Рассмотрим каждый случай. 1. В основе квадрат - если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех внутренних углов данного многоугольника пересекаются в одной точке, которая и является центром вписанной окружности - у квадрата диагонали являются и биссектрисами его углов, и как известно, диагонали пересекаются в одной точке. Доказано. 2. В основании ромб - диагонали ромба являются и биссектрисами его углов, и пересекаются в одной точке, которая и будет центром вписаной окружности. Доказано. 3. Четырехугольник - произвольный, но в него можно вписать окружность. Биссектрисы такого четырехугольника не будут совпадать с диагоналями, следовательно точка пересечения диагоналей и его центр вписанной окружности - разные точки. Этот случай нам не подходит.
Доказано, что если у пирамиды боковые грани наклонены к плоскости основания под одним углом, то точка пересечения диагоналей четырехугольника будет центром вписанной окружности.
Чтобы доказать что сторона СD параллельна плоскости альфа (треугольника) нужно обратиться к признаку параллельности прямой и плоскости . Он звучит так: Если прямая , которая не лежит в плоскости , параллельна какой-нибудь прямой плоскости , то она параллельна и самой плоскости. Какая-нибудь прямая на плоскости альфа (например) будет прямая АВ , потому что СD 100% параллельна AB так как они вместе лежат в плоскости ромба. НО одновременно АВ находиться в плоскости треугольника , потому что 2 плоскости пересекаются по этой прямой. Значит СD параллельна АВ не просто как в плоскости ромба , а и как в плоскости треугольника. Значит у нас все сходится с признаком параллельности . Если СD (это какая-нибудь прямая вне плоскости) параллельна какой-нибудь прямой на данной плоскости (имеется ввиду плоскость треугольника ) , то СD параллельна САМОЙ ПЛОСКОСТИ . Доказано!
P.S. Если внимательно все прочитать , то все поймешь :D
1. Квадрат
2. Ромб
3. Четырехугольник, у которого сумма одних противоположных сторон равна сумме других противоположных сторон.Рассмотрим каждый случай.
1. В основе квадрат - если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех внутренних углов данного многоугольника пересекаются в одной точке, которая и является центром вписанной окружности - у квадрата диагонали являются и биссектрисами его углов, и как известно, диагонали пересекаются в одной точке. Доказано.
2. В основании ромб - диагонали ромба являются и биссектрисами его углов, и пересекаются в одной точке, которая и будет центром вписаной окружности. Доказано.
3. Четырехугольник - произвольный, но в него можно вписать окружность. Биссектрисы такого четырехугольника не будут совпадать с диагоналями, следовательно точка пересечения диагоналей и его центр вписанной окружности - разные точки. Этот случай нам не подходит.
Доказано, что если у пирамиды боковые грани наклонены к плоскости основания под одним углом, то точка пересечения диагоналей четырехугольника будет центром вписанной окружности.