Объяснение:
given, cosA + cosB + cosC = 3/2
=> 2(2cos(A + B)/2 . cos(A - B)/2) + 2cosC = 3
=> 2(2cos(pi/2 -c/2) .cos(A - B)/2 + 2(1 - 2sin^2(A/2)) = 3
=> 4sin(c/2) .cos(A - B)/2 + 2 - 4sin^2(A/2)) = 3
=> 4sin^2(A/2) - 4sin(c/2) .cos(A - B)/2 + 1 = 0
This is a quadratic equation in sinc/2, and it has real roots
Therefore , Descriminant >= 0
=> (-4cos(A - B)/2)^2 - 4*4*1 >= 0
=> (cos(A - B))^2 >= 1
=> cos(A - B) = 1, since cosine of any angle can't be > 1
=> A - B = 0
=> A = B
Similarily we can prove that B = C
Thus A = B = C, triangle is equilateral
ответ: 4) 288.
Решение.
Пусть ABC - треугольник, и угол B - ппрямой.
Пусть BК - высота, проведенная из вершины прямого угла B,
BМ - бисектриса, проведенная из угла B, при этом на стороне АС.
BК = 6, ВМ = 8.
точки находятся в таком порядке: A, К, М, C.
Начертите такой треугольник, чтобы было понятнее.
Угол АВМ = угол МВС = 45 гр = pi/4.
Обозначим угол КВМ = alfa.
cos(alfa) = ВК/ВМ = 6/8 = 3/4.
sin(alfa) = V(1 - 9/16) = V((16 - 9)/16) = V(7)/4 (V - корень квдратный) .
В треугольнике АВК угол АВК = угол АВМ - alfa = pi/4 - alfa.
АВ = ВК/cos(pi/4 - alfa) = 6/cos(pi/4 - alfa).
В треугольнике КВС угол КВС = угол МВС + alfa = pi/4 + alfa.
ВС = ВК/cos(pi/4 + alfa) = 6/cos(pi/4 + alfa).
Площадь треугольника АВС:
S = (1/2)*АВ*ВС = (1/2)*6*6/( cos(pi/4 - alfa)*cos(pi/4 + alfa) ) = 18/( cos(pi/4 - alfa)*cos(pi/4 + alfa) ).
cos(pi/4 - alfa) = cos(pi/4)*cos(alfa) + sin(pi/4)*sin(alfa) = (V(2)/2)*(3/4) + (V(2)/2)*(V(7)/4) = (V(2)/2)*(3 + V(7)/4
cos(pi/4 + alfa) = cos(pi/4)*cos(alfa) - sin(pi/4)*sin(alfa) = (V(2)/2)*(3/4) - (V(2)/2)*(V(7)/4) = (V(2)/2)*(3 - V(7)/4
Поэтоиу
S = 18*4*4/( (V(2)/2)*(3 + V(7)* (V(2)/2)*(3 - V(7) ) = 18*16*2/(3^2 - V(7)^2) = 18*16*2/(9 - 7) = 18*16 = 288.
Объяснение:
given, cosA + cosB + cosC = 3/2
=> 2(2cos(A + B)/2 . cos(A - B)/2) + 2cosC = 3
=> 2(2cos(pi/2 -c/2) .cos(A - B)/2 + 2(1 - 2sin^2(A/2)) = 3
=> 4sin(c/2) .cos(A - B)/2 + 2 - 4sin^2(A/2)) = 3
=> 4sin^2(A/2) - 4sin(c/2) .cos(A - B)/2 + 1 = 0
This is a quadratic equation in sinc/2, and it has real roots
Therefore , Descriminant >= 0
=> (-4cos(A - B)/2)^2 - 4*4*1 >= 0
=> (cos(A - B))^2 >= 1
=> cos(A - B) = 1, since cosine of any angle can't be > 1
=> A - B = 0
=> A = B
Similarily we can prove that B = C
Thus A = B = C, triangle is equilateral
ответ: 4) 288.
Решение.
Пусть ABC - треугольник, и угол B - ппрямой.
Пусть BК - высота, проведенная из вершины прямого угла B,
BМ - бисектриса, проведенная из угла B, при этом на стороне АС.
BК = 6, ВМ = 8.
точки находятся в таком порядке: A, К, М, C.
Начертите такой треугольник, чтобы было понятнее.
Угол АВМ = угол МВС = 45 гр = pi/4.
Обозначим угол КВМ = alfa.
cos(alfa) = ВК/ВМ = 6/8 = 3/4.
sin(alfa) = V(1 - 9/16) = V((16 - 9)/16) = V(7)/4 (V - корень квдратный) .
В треугольнике АВК угол АВК = угол АВМ - alfa = pi/4 - alfa.
АВ = ВК/cos(pi/4 - alfa) = 6/cos(pi/4 - alfa).
В треугольнике КВС угол КВС = угол МВС + alfa = pi/4 + alfa.
ВС = ВК/cos(pi/4 + alfa) = 6/cos(pi/4 + alfa).
Площадь треугольника АВС:
S = (1/2)*АВ*ВС = (1/2)*6*6/( cos(pi/4 - alfa)*cos(pi/4 + alfa) ) = 18/( cos(pi/4 - alfa)*cos(pi/4 + alfa) ).
cos(pi/4 - alfa) = cos(pi/4)*cos(alfa) + sin(pi/4)*sin(alfa) = (V(2)/2)*(3/4) + (V(2)/2)*(V(7)/4) = (V(2)/2)*(3 + V(7)/4
cos(pi/4 + alfa) = cos(pi/4)*cos(alfa) - sin(pi/4)*sin(alfa) = (V(2)/2)*(3/4) - (V(2)/2)*(V(7)/4) = (V(2)/2)*(3 - V(7)/4
Поэтоиу
S = 18*4*4/( (V(2)/2)*(3 + V(7)* (V(2)/2)*(3 - V(7) ) = 18*16*2/(3^2 - V(7)^2) = 18*16*2/(9 - 7) = 18*16 = 288.
Объяснение: