1)Точки F и E-середины сторон BC и BA треугольника ABC.
Отрезок, соединяющий середины двух сторон треугольника, является его средней линией, равен половине третьей стороны и параллелен ей.
АЕ=ВЕ=10 => АВ=10•2=20 см
CF=BF=> ВС=16•2=32 см
АС=EF•2=14•2=28 см.
Периметр треугольника - сумма длин его сторон.
Р(АВС)=20+28+32=80 см
Вариант решения.
Так как отрезок ЕF – средняя линия ∆ АВС и параллелен АС, углы при основаниях ∆ АВС и ∆ ВЕF равны как соответственные углы при пересечении параллельных прямых секущими АВ и СВ, и угол В - общий.
Поэтому ∆ АВС~∆ ВЕF по равным углам.
АВ=2•ВЕ=>
Коэффициент подобия этих треугольников равен АВ:ВЕ. k=2
Р(BEF)=BE+BF+EF=40 см
Отношение периметров подобных фигур равно коэффициенту подобия их линейных размеров. ⇒
Р(АВС)=2Р(BEF)=2•40=80 см
2) Примем меньшее основание трапеции равным а. Тогда большее – 2а
Средняя линия трапеции равна половине суммы оснований.
Большее 4•2=8 см
Меньшее основание трапеции равно 4 см.
Объяснение:
1)Точки F и E-середины сторон BC и BA треугольника ABC.
Отрезок, соединяющий середины двух сторон треугольника, является его средней линией, равен половине третьей стороны и параллелен ей.
АЕ=ВЕ=10 => АВ=10•2=20 см
CF=BF=> ВС=16•2=32 см
АС=EF•2=14•2=28 см.
Периметр треугольника - сумма длин его сторон.
Р(АВС)=20+28+32=80 см
Вариант решения.
Так как отрезок ЕF – средняя линия ∆ АВС и параллелен АС, углы при основаниях ∆ АВС и ∆ ВЕF равны как соответственные углы при пересечении параллельных прямых секущими АВ и СВ, и угол В - общий.
Поэтому ∆ АВС~∆ ВЕF по равным углам.
АВ=2•ВЕ=>
Коэффициент подобия этих треугольников равен АВ:ВЕ. k=2
Р(BEF)=BE+BF+EF=40 см
Отношение периметров подобных фигур равно коэффициенту подобия их линейных размеров. ⇒
Р(АВС)=2Р(BEF)=2•40=80 см
2) Примем меньшее основание трапеции равным а. Тогда большее – 2а
Средняя линия трапеции равна половине суммы оснований.
6=( а+2а):2
а+2а=12
3а=12 ⇒ а=12:3=4
Меньшее основание трапеции равно 4 см.
Большее 4•2=8 см
AE=BD, AF=CD, EB=FC=AD (как противоположные стороны параллелограммов)
AD=3BC, FB=FC-BC=2BC, EF=EB-FB=BC, FG=GB=FB/2=BC
AB⊥CD => AB⊥AF, ∠FAB=90°
AG=FB/2=BC (медиана из прямого угла равна половине гипотенузы)
AG=EF=FG=GB=BC=y
AE=BD=2x
AC=3x
AF=CD=a
AB=b
△FAB (по теореме Пифагора):
a^2 +b^2 =4y^2
-------
Медиана через стороны треугольника (теорема Аполлония):
Mc= √(2a^2 +2b^2 -c^2)/2
-------
AG - медиана △FAB
y= √(2a^2 +2b^2 -4y^2)/2
AG - медиана △EAC
y= √(8x^2 +18x^2 -16y^2)/2
√(2a^2 +2b^2 -4y^2)/2 = √(8x^2 +18x^2 -16y^2)/2 <=>
a^2 +b^2 = 13x^2 -6y^2 <=>
4y^2 = 13x^2 -6y^2 <=>
10y^2 = 13x^2 <=>
y^2= 1,3x^2
AF - медиана △EAG
a= √(8x^2 +2y^2 -4y^2)/2 =√(8x^2 -2y^2)/2
AB - медиана △GAC
b= √(18x^2 +2y^2 -4y^2)/2 =√(18x^2 -2y^2)/2
a/b= √(8x^2 -2y^2)/2 ÷ √(18x^2 -2y^2)/2 =
√[ (4x^2 -y^2)/(9x^2 -y^2) ] =
√[ (4x^2 -1,3x^2)/(9x^2 -1,3x^2) ] =
√(2,7x^2/7,7x^2) = √(27/77)
CD/AB = √(27/77)