Найдите скалярное произведение векторов m и n, если m=2a-c(векторы), n= -4c+3a (векторы), модуль вектора a=2, модуль вектора с=3, вектор а перпендикулярен вектору с если можно, то с решением
Предварительные вычисления. Радиус вписанной окружности основания r = √3/6·a Радиус описанной окружности R = √3/3·а Площадь основания S = √3/4·a² а) Сечение параллельно основанию через середину высоты. Треугольник этого сечения подобен треугольнику основания с коэффициентом подобия k = 0,5 Площадь сечения относится с площадью основания как k² s₁ = S·k² = S/4 = √3/16·a² б) Сечение проходит через боковое ребро и высоту Основание треугольника сечения r+R, высота h Площадь s₂ = 1/2(r+R)h = 1/2(√3/6·a+√3/3·a)h = 1/2√3/2·ah = √3/4·ah в) сечение через сторону основания перпендикулярно противоположному боковому ребру В треугольнике из пункта и в текущем высота h₃ общая (на рисунке синяя). Найдём ей через площадь треугольника из пункта. Нам нужна длина бокового ребра пирамиды l² = h²+R² = h²+a²/3 l = √(h²+a²/3) s₂ = 1/2 h₃l √3/4·ah = 1/2 h₃√(h²+a²/3) √3/2·ah = h₃√(h²+a²/3) h₃ = √3·ah/(2√(h²+a²/3)) s₃ = 1/2·h₃a = √3·a²h/(4√(h²+a²/3)) = 3a²h/(4√(3h²+a²)) г) сечение через центр основания параллельно боковой грани Треугольник этого сечения параллелен и подобен боковой грани пирамиды с коэффициентом подобия k = R/(R+r) = 2/3 Найдём плошадь боковой стороны Её высота (синяя) l² = h²+r² = h²+3/36·a² = h²+a²/12 l = √(h²+a²/12) площадь боковой стороны s = 1/2·al = 1/2·a√(h²+a²/12) площадь сечения s₄ = k²s = 4/9·1/2·a√(h²+a²/12) = 2/9·a√(h²+a²/12) д) Сечение через середины четырех ребер Такое сечение можно построить только проходящим через середины двух рёбер основания и двух боковых рёбер Сечение имеет форму четырёхугольника (или равносторонняя трапеция или прямоугольник) Нижнее ребро b₁ - средняя линия основания, его длина b₁ = a/2 Боковое b₂ и b₄ - средняя линия боковой грани и в два раза короче бокового ребра, длину его вычисляли раньше √(h²+a²/3) b₂ = b₄ = (√(h²+a²/3))/2 верхнее ребро b₃ - средняя линия боковой грани, проведённая параллельно основанию, его длина b₃ = a/2 Итого - у нас прямоугольник с площадью s₅ = a/2·(√(h²+a²/3))/2 = (a√(h²+a²/3))/4
"1. На луче с началом в точке А отмечены точки В и С. Известно, что AC = 7, 8см, ВС = 2,5 см. Какую длину может иметь отрезок АВ?
2. Луч BP проходит между сторонами угла ABC. Найдите угол РВС, Если угол ABC равен 83 , угол АВР равна 48
3. Один из двух углов, образованных при пересечении двух прямых, на 22 меньше второго. Найдите все образовавшиеся углы.
4. Один из смежных углов в 4 раза меньше второго. "
1) АВ=АС-ВС.
АВ=7,8-2,5=5,3 см.
2) ∠РВС=∠АВС-∠АВР=83*-48*=35*.
3) Меньший угол обозначим через х. Тогда больший будет х+22*
Эти углы смежные и их сумма равна 180*.
х+х+22*=180*.
2х=158*.
х=79*. - меньший угол.
79*+22*=101* - больший угол.
ответ: При пересечении двух прямых образовалось четыре угла: два смежных 79* и 100* и два накрест лежащих: 79*=79* и 101*=101*.
4) меньший угол обозначим через х. Тогда больший будет 4х. Сумма смежных углов равна 180*.
х+4х=180*.
5х=180*.
х=36* - меньший угол.
Больший угол равен 36*4=144*
ответ: 36* и 144*( 36*+144*=180*)
Радиус вписанной окружности основания
r = √3/6·a
Радиус описанной окружности
R = √3/3·а
Площадь основания
S = √3/4·a²
а) Сечение параллельно основанию через середину высоты.
Треугольник этого сечения подобен треугольнику основания с коэффициентом подобия k = 0,5
Площадь сечения относится с площадью основания как k²
s₁ = S·k² = S/4 = √3/16·a²
б) Сечение проходит через боковое ребро и высоту
Основание треугольника сечения r+R, высота h
Площадь
s₂ = 1/2(r+R)h = 1/2(√3/6·a+√3/3·a)h = 1/2√3/2·ah = √3/4·ah
в) сечение через сторону основания перпендикулярно противоположному боковому ребру
В треугольнике из пункта и в текущем высота h₃ общая (на рисунке синяя). Найдём ей через площадь треугольника из пункта.
Нам нужна длина бокового ребра пирамиды
l² = h²+R² = h²+a²/3
l = √(h²+a²/3)
s₂ = 1/2 h₃l
√3/4·ah = 1/2 h₃√(h²+a²/3)
√3/2·ah = h₃√(h²+a²/3)
h₃ = √3·ah/(2√(h²+a²/3))
s₃ = 1/2·h₃a = √3·a²h/(4√(h²+a²/3)) = 3a²h/(4√(3h²+a²))
г) сечение через центр основания параллельно боковой грани
Треугольник этого сечения параллелен и подобен боковой грани пирамиды с коэффициентом подобия k = R/(R+r) = 2/3
Найдём плошадь боковой стороны
Её высота (синяя)
l² = h²+r² = h²+3/36·a² = h²+a²/12
l = √(h²+a²/12)
площадь боковой стороны
s = 1/2·al = 1/2·a√(h²+a²/12)
площадь сечения
s₄ = k²s = 4/9·1/2·a√(h²+a²/12) = 2/9·a√(h²+a²/12)
д) Сечение через середины четырех ребер
Такое сечение можно построить только проходящим через середины двух рёбер основания и двух боковых рёбер
Сечение имеет форму четырёхугольника (или равносторонняя трапеция или прямоугольник)
Нижнее ребро b₁ - средняя линия основания, его длина
b₁ = a/2
Боковое
b₂ и b₄ - средняя линия боковой грани и в два раза короче бокового ребра, длину его вычисляли раньше √(h²+a²/3)
b₂ = b₄ = (√(h²+a²/3))/2
верхнее ребро b₃ - средняя линия боковой грани, проведённая параллельно основанию, его длина
b₃ = a/2
Итого - у нас прямоугольник с площадью
s₅ = a/2·(√(h²+a²/3))/2 = (a√(h²+a²/3))/4